Supertex inc.

N-Channel Enhancement-Mode Vertical DMOS FETs

Features

- ► Free from secondary breakdown
- Low power drive requirement
- Ease of paralleling
- ► Low C_{iss} and fast switching speeds
- Excellent thermal stability
- Integral SOURCE-DRAIN diode
- High input impedance and high gain
- Complementary N- and P-Channel devices

Applications

- Motor controls
- Converters
- Amplifiers
- Switches
- Power supply circuits
- Drivers (relays, hammers, solenoids, lamps, memories, displays, bipolar transistors, etc.)

General Description

The Supertex VN0550 is an enhancement-mode (normally-off) transistor that utilizes a vertical DMOS structure and Supertex's well-proven silicon-gate manufacturing process. This combination produces a device with the power handling capabilities of bipolar transistors, and the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, this device is free from thermal runaway and thermally-induced secondary breakdown.

Supertex's vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where very low threshold voltage, high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

Ordering Information

Device	Package	$BV_{DSS}\!/\!BV_{DGS}$ (V)	R _{DS(ON)} (max) (Ω)	l _{D(ON)} (min) (mA)	
VN0550N3	TO-92	500	60	150	
VN0550N3-G				150	

-G indicates package is RoHS compliant ('Green')

Absolute Maximum Ratings

Parameter	Value
Drain to source voltage	BV _{DSS}
Drain to gate voltage	BV_{DGS}
Gate to source voltage	±20V
Operating and storage temperature	-55°C to +150°C
Soldering temperature ¹	+300°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous peration of the device at the absolute rating level may affect device reliability. All workinges are referenced to device ground.

Pin Configuration

TO-92 (front view)

To Care to the case for 10 seconds.

1. Distance of 1.6mm from case for 10 seconds.

Electrical Characteristics (T_A = 25°C unless otherwise specified)

$ \begin{array}{ c c c c c c c } \hline BV_{DSS} & Drain-to-source breakdown voltage & 500 & - & - & V & V_{GS} = 0V, I_{D} = 1.0mA \\ \hline V_{GS(th)} & Gate threshold voltage & 2.0 & - & 4.0 & V & V_{GS} = V_{DS}, I_{D} = 1.0mA \\ \hline AV_{GS(th)} & Change in V_{GS(th)} with temperature & - & -3.8 & -5.0 & mV/^{\circ}C & V_{GS} = V_{DS}, I_{D} = 1.0mA \\ \hline I_{DSS} & Gate body leakage current & - & - & 100 & nA & V_{GS} = ±20V, V_{DS} = 0V \\ \hline I_{DSS} & Zero gate voltage drain current & - & - & 100 & nA & V_{GS} = ±20V, V_{DS} = 0V \\ \hline I_{DSS} & Zero gate voltage drain current & - & - & 100 & mA & V_{GS} = 0V, V_{DS} = 0N & Max Rating \\ \hline I_{DSS} & Zero gate voltage drain current & - & - & 100 & - & mA \\ \hline I_{DSS} & Zero gate voltage drain current & - & - & 100 & - & mA \\ \hline I_{D(ON)} & ON-state drain current & - & 100 & - & mA \\ \hline I_{D(ON)} & ON-state drain current & - & 100 & - & mA \\ \hline I_{D(ON)} & ON-state drain current & - & 100 & - & mA \\ \hline I_{D(ON)} & - & - & 45 & - & 0 \\ \hline I_{D(ON)} & ON-state drain current & - & 45 & - & 0 \\ \hline I_{D(ON)} & - & - & 40 & 60 & - & 0 \\ \hline I_{D(ON)} & - & - & 40 & 60 & - & 0 \\ \hline I_{D(ON)} & - & - & 40 & 60 & - & 0 \\ \hline I_{D(ON)} & - & - & 40 & 60 & - & 0 \\ \hline I_{D(ON)} & - & - & - & 10 & - & 0 \\ \hline I_{D(ON)} & - & - & - & - & 10 & - & 0 \\ \hline I_{$	Symbol	Parameter	Min	Тур	Max	Units	Conditions	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BV _{DSS}	Drain-to-source breakdown voltage	500	-	-	V	$V_{GS} = 0V, I_D = 1.0 \text{mA}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$V_{GS(th)}$	Gate threshold voltage	2.0	-	4.0	V	$V_{GS} = V_{DS}$, $I_{D} = 1.0 \text{mA}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\Delta V_{GS(th)}$	Change in V _{GS(th)} with temperature	-	-3.8	-5.0	mV/°C	$V_{GS} = V_{DS}$, $I_D = 1.0 \text{mA}$	
$ \begin{array}{ c c c c c } \hline I_{DSS} & Zero \ gate \ voltage \ drain \ current & - & - & 1.0 & mA & V_{GS} = 0V, V_{DS} = 0.8 \ Max \ Rating, \\ \hline I_{D(ON)} & ON-state \ drain \ current & - & 100 & - & mA \\ \hline I_{D(ON)} & ON-state \ drain \ current & - & 100 & - & mA \\ \hline I_{D(ON)} & - & - & 45 & - & 0 \\ \hline I_{D(ON)} & - & - & 45 & - & 0 \\ \hline I_{D(ON)} & - & - & 45 & - & 0 \\ \hline I_{D(ON)} & - & - & 40 & 60 & - & 0 \\ \hline I_{D(ON)} & - & - & 40 & 60 & - & 0 \\ \hline I_{D(ON)} & - & - & - & 1.0 & 1.7 & \%/^{\circ}C & V_{GS} = 10V, \ I_D = 50mA \\ \hline I_{D(ON)} & - & - & - & 1.0 & 1.7 & \%/^{\circ}C & V_{GS} = 10V, \ I_D = 50mA \\ \hline I_{D(ON)} & - & - & - & - & 1.0 & - & - & - & 1.0 \\ \hline I_{D(ON)} & - & - & - & - & - & - & 1.0 \\ \hline I_{D(ON)} & - & - & - & - & - & - & - & 1.0 \\ \hline I_{D(ON)} & - & - & - & - & - & - & - & 1.0 \\ \hline I_{D(ON)} & - & - & - & - & - & - & - & - & - & $		Gate body leakage current	-	-	100	nA	$V_{GS} = \pm 20V, V_{DS} = 0V$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	-	10	μA	$V_{GS} = 0V, V_{DS} = Max Rating$	
$ \begin{array}{ c c c c c c } \hline I_{D(ON)} & ON-state drain current & 150 & 350 & - & MA & V_{GS} = 10V, V_{DS} = 25V \\ \hline R_{DS(ON)} & Static drain-to-source & - & 45 & - & & V_{GS} = 5.0V, I_D = 50mA \\ \hline ON-state resistance & - & 40 & 60 & V_{GS} = 10V, I_D = 50mA \\ \hline \Delta R_{DS(ON)} & Change in R_{DS(ON)} with temperature & - & 1.0 & 1.7 & %/^{\circ}C & V_{GS} = 10V, I_D = 50mA \\ \hline G_{FS} & Forward transconductance & 50 & 100 & - & mmho & V_{DS} = 25V, I_D = 50mA \\ \hline C_{ISS} & Input capacitance & - & 45 & 55 & & \\ \hline C_{OSS} & Common source output capacitance & - & 8.0 & 10 & pF & V_{GS} = 0V, V_{DS} = 25V, f = 1.0MHz \\ \hline C_{RSS} & Reverse transfer capacitance & - & 2.0 & 5.0 & & \\ \hline t_{d(ON)} & Turn-ON time & - & - & 10 & & \\ \hline t_{f} & Rise time & - & - & 15 & & \\ \hline t_{d(OFF)} & Turn-OFF time & - & - & 10 & & \\ \hline t_{f} & Fall time & - & 10 & & \\ \hline V_{SD} & Diode forward voltage drop & - & 0.8 & - & V & V_{GS} = 0V, I_{SD} = 500mA \\ \hline \end{array}$	I _{DSS}	Zero gate voltage drain current	-	-	1.0	mA	$V_{GS} = 0V$, $V_{DS} = 0.8$ Max Rating, $T_A = 125^{\circ}C$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ON-state drain current	-	100	-	mA	$V_{GS} = 5.0V, V_{DS} = 25V$	
$ \begin{array}{ c c c c c c c c c } \hline R_{\text{DS(ON)}} & \text{ON-state resistance} & - & 40 & 60 & & & & & & & & \\ \hline \Delta R_{\text{DS(ON)}} & \text{Change in R}_{\text{DS(ON)}} & \text{with temperature} & - & 1.0 & 1.7 & %/^{\circ}\text{C} & V_{\text{GS}} = 10\text{V}, I_{\text{D}} = 50\text{mA} \\ \hline G_{\text{FS}} & \text{Forward transconductance} & 50 & 100 & - & \text{mmho} & V_{\text{DS}} = 25\text{V}, I_{\text{D}} = 50\text{mA} \\ \hline C_{\text{ISS}} & \text{Input capacitance} & - & 45 & 55 & & \\ \hline C_{\text{OSS}} & \text{Common source output capacitance} & - & 8.0 & 10 & & \\ \hline C_{\text{RSS}} & \text{Reverse transfer capacitance} & - & 2.0 & 5.0 & & \\ \hline t_{\text{d(ON)}} & \text{Turn-ON time} & - & - & 10 & & \\ \hline t_{\text{f}} & \text{Rise time} & - & - & 15 & & \\ \hline t_{\text{d(OFF)}} & \text{Turn-OFF time} & - & - & 10 & & \\ \hline t_{\text{f}} & \text{Fall time} & - & - & 10 & & \\ \hline V_{\text{SD}} & \text{Diode forward voltage drop} & - & 0.8 & - & V & V_{\text{GS}} = 0\text{V}, I_{\text{SD}} = 500\text{mA} \\ \hline \end{array}$	D(ON)		150	350	-		V _{GS} = 10V, V _{DS} = 25V	
$ \begin{array}{ c c c c c c } \hline \text{ON-state resistance} & - & 40 & 60 & & V_{_{GS}} = 10\text{V}, I_{_{D}} = 50\text{mA} \\ \hline \Delta R_{_{DS(ON)}} & \text{Change in R}_{_{DS(ON)}} & \text{with temperature} & - & 1.0 & 1.7 & \%/^{\circ}\text{C} & V_{_{GS}} = 10\text{V}, I_{_{D}} = 50\text{mA} \\ \hline G_{_{FS}} & \text{Forward transconductance} & 50 & 100 & - & \text{mmho} & V_{_{DS}} = 25\text{V}, I_{_{D}} = 50\text{mA} \\ \hline C_{_{ISS}} & \text{Input capacitance} & - & 45 & 55 \\ \hline C_{_{OSS}} & \text{Common source output capacitance} & - & 8.0 & 10 \\ \hline C_{_{RSS}} & \text{Reverse transfer capacitance} & - & 2.0 & 5.0 \\ \hline t_{_{d(ON)}} & \text{Turn-ON time} & - & - & 10 \\ \hline t_{_{f}} & \text{Rise time} & - & - & 15 \\ \hline t_{_{d(OFF)}} & \text{Turn-OFF time} & - & - & 10 \\ \hline t_{_{f}} & \text{Fall time} & - & 10 \\ \hline V_{_{SD}} & \text{Diode forward voltage drop} & - & 0.8 & - & V & V_{_{GS}} = 0\text{V}, I_{_{SD}} = 500\text{mA} \\ \hline \end{array}$	П		-	45	-	Ω	$V_{GS} = 5.0V, I_{D} = 50mA$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R _{DS(ON)}		-	40	60		$V_{GS} = 10V, I_D = 50mA$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\Delta R_{DS(ON)}$	Change in R _{DS(ON)} with temperature	-	1.0	1.7	%/°C	$V_{GS} = 10V, I_D = 50mA$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Forward transconductance	50	100	-	mmho	$V_{DS} = 25V, I_{D} = 50mA$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C _{ISS}	Input capacitance	-	45	55			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C _{oss}	Common source output capacitance	ı	8.0	10	pF	$V_{GS} = 0V, V_{DS} = 25V, f = 1.0MHz$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C _{RSS}	Reverse transfer capacitance	-	2.0	5.0			
		Turn-ON time	-	-	10	ns		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _r	Rise time	-	-	15		$V_{DD} = 25V,$ $V_{DD} = 150m\Delta$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _{d(OFF)}	Turn-OFF time	-	-	10			
		Fall time	-		10		GLN	
	V _{SD}	Diode forward voltage drop	-	0.8	-	V	$V_{GS} = 0V, I_{SD} = 500 \text{mA}$	
	t _{rr}			300	-	ns	$V_{GS} = 0V$, $I_{SD} = 500$ mA	

Notes

Thermal Characteristics

Device	Package	I _D (continuous)* (mA)	I _D (pulsed) (mA)	Power Dissipation @T _c = 25°C (W)	θ _{Jc} (°C/W)	θ _{JA} (°C/W)	l _{DR} * (mA)	I _{DRM} (mA)
VN0550	TO-92	50	250	1.0	125	170	50	250

Notes:

Switching Waveforms and Test Circuit

^{1.} All D.C. parameters 100% tested at 25°C unless otherwise stated. (Pulse test: 300µs pulse, 2% duty cycle.)

^{2.} All A.C. parameters sample tested.

^{*} I_D (continuous) is limited by max rated T_J .

VN0550

Typical Performance Curves

Typical Performance Curves (cont.)

TO-92 Package Outline

Notes:

All dimensions are in millimeters; all angles in degrees.

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell its products for use in such applications, unless it receives an adequate "product liability indemnification insurance agreement". **Supertex** does not assume responsibility for use of devices described and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions or inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications, refer to the **Supertex** website: http://www.supertex.com.

