### LOW-POWER ULTRA-CONFIGURABLE MULTIPLE-FUNCTION GATE WITH 3-STATE OUTPUTS SCES594A - JULY 2004 - REVISED OCTOBER 2004 - Available in the Texas Instruments NanoStar™ and NanoFree™ Packages - Low Static-Power Consumption; $I_{CC} = 0.9 - \mu A Max$ - Low Dynamic-Power Consumption; $C_{pd} = 5 pF Typ at 3.3 V$ - Low Input Capacitance; C<sub>i</sub> = 1.5 pF Typ - Low Noise Overshoot and Undershoot <10% of V<sub>CC</sub> - Input-Disable Feature Allows Floating Input Conditions - Ioff Supports Partial-Power-Down Mode Operation - **Includes Schmitt-Trigger Inputs** - Wide Operating V<sub>CC</sub> Range of 0.8 V to 3.6 V - **Optimized for 3.3-V Operation** - 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation - $t_{pd} = 7.4 \text{ ns Max at } 3.3 \text{ V}$ - Suitable for Point-to-Point Applications - Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II - **ESD Performance Tested Per JESD 22** - 2000-V Human-Body Model (A114-B, Class II) - 200-V Machine Model (A115-A) - 1000-V Charged-Device Model (C101) #### **DCT OR DCU PACKAGE** (TOP VIEW) 8 VCC OE В 6 D 3 **GND** ### description/ordering information The AUP family is TI's premier solution to the industry's low-power needs in battery-powered portable applications. This family ensures a very low static- and dynamic-power consumption across the entire V<sub>CC</sub> range of 0.8 V to 3.6 V, resulting in an increased battery life. This product also maintains excellent signal integrity (see Figures 1 and 2). Figure 1. AUP - The Lowest-Power Family Figure 2. Excellent Signal Integrity The SN74AUP1G99 features configurable multiple functions with a 3-state output. This device has the input-disable feature, which allows floating input signals. The inputs and output are disabled when the output-enable ( $\overline{OE}$ ) input is high. When $\overline{OE}$ is low, the output state is determined by 16 patterns of 4-bit input. The user can choose the logic functions, such as MUX, AND, OR, NAND, NOR, XOR, XNOR, inverter, and buffer. All inputs can be connected to V<sub>CC</sub> or GND. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. hoStar and NanoFree are trademarks of Texas Instruments. ### SN74AUP1G99 LOW-POWER ULTRA-CONFIGURABLE MULTIPLE-FUNCTION GATE WITH 3-STATE OUTPUTS SCES594A - JULY 2004 - REVISED OCTOBER 2004 ### description/ordering information (continued) This device functions as an independent gate with Schmitt-trigger inputs, which allows for slow input transition and better switching noise immunity at the input. To ensure the high-impedance state during power up or power down, $\overline{OE}$ should be tied to $V_{CC}$ through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. NanoStar™ and NanoFree™ package technology is a major breakthrough in IC packaging concepts, using the die as the package. This device is fully specified for partial-power-down applications using I<sub>off</sub>. The I<sub>off</sub> circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. #### **ORDERING INFORMATION** | TA | PACKAGE <sup>†</sup> | | ORDERABLE<br>PART NUMBER | TOP-SIDE<br>MARKING‡ | |---------------|---------------------------------------------------------------------|---------------|--------------------------|----------------------| | | NanoStar™ – WCSP (DSBGA)<br>0.23-mm Large Bump – YEP Tape and reel | | SN74AUP1G99YEPR | 1157 | | -40°C to 85°C | NanoFree™ – WCSP (DSBGA)<br>0.23-mm Large Bump – YZP (Pb-free) | Tape and reel | SN74AUP1G99YZPR | HY_ | | | SSOP - DCT | Tape and reel | SN74AUP1G99DCTR | H99 | | | VSSOP - DCU | Tape and reel | SN74AUP1G99DCUR | H99_ | <sup>†</sup> Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. DCT: The actual top-side marking has three additional characters that designate the year, month, and assembly/test site. DCU: The actual top-side marking has one additional character that designates the assembly/test site. YEP/YZP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site. Pin 1 identifier indicates solder-bump composition (1 = SnPb, • = Pb-free). #### **FUNCTION TABLE** | | | INPUTS | | | OUTPUT | |----|----|--------|----|----|--------| | OE | D | С | В | Α | Υ | | L | L | L | L | L | L | | L | L | L | L | Н | Н | | L | L | L | Н | L | L | | L | L | L | Н | Н | Н | | L | L | Н | L | L | L | | L | L | Н | L | Н | L | | L | L | Н | Н | L | Н | | L | L | Н | Н | Н | Н | | L | Н | L | L | L | Н | | L | Н | L | L | Н | L | | L | Н | L | Н | L | Н | | L | Н | L | Н | Н | L | | L | Н | Н | L | L | Н | | L | Н | Н | L | Н | Н | | L | Н | Н | Н | L | L | | L | Н | Н | Н | Н | L | | Н | χ† | χ† | χţ | χ† | Z | <sup>†</sup> Floating inputs allowed. ## logic diagram (positive logic) # LOW-POWER ULTRA-CONFIGURABLE MULTIPLE-FUNCTION GATE WITH 3-STATE OUTPUTS SCES594A – JULY 2004 – REVISED OCTOBER 2004 #### **FUNCTION SELECTION TABLE** | PRIMARY FUNCTION | COMPLEMENTARY FUNCTION | PAGE | |------------------------------------------------|-------------------------------------------|------| | 3-state buffer | | 4 | | 3-state inverter | | 4 | | 3-state 2-to-1 data selector MUX | | 5 | | 3-state 2-to-1 data selector MUX, inverted out | | 5 | | 3-state 2-input AND | 3-state 2-input NOR, both inputs inverted | 5 | | 3-state 2-input AND, 1 input inverted | 3-state 2-input NOR, 1 input inverted | 5 | | 3-state 2-input AND, both inputs inverted | 3-state 2-input NOR | 5 | | 3-state 2-input NAND | 3-state 2-input OR, both inputs inverted | 6 | | 3-state 2-input NAND, 1 input inverted | 3-state 2-input OR, 1 input inverted | 6 | | 3-state 2-input NAND, both inputs inverted | 3-state 2-input OR | 6 | | 3-state 2-input XOR | | 6 | | 3-state 2-input XNOR | 3-state 2-input XOR, 1 input inverted | 7 | ### **3-STATE BUFFER FUNCTIONS AVAILABLE** | FUNCTION | ŌĒ | Α | В | С | D | |----------------|----|-------|-------|-------|-------| | | | Input | Х | L | L | | | L | Х | Input | Н | L | | | | L | Н | Input | L | | 3-state buffer | | Н | L | Input | Н | | | | Н | Х | L | Input | | | | Х | L | Н | Input | | | | L | L | Х | Input | X = H or L #### **3-STATE INVERTER FUNCTIONS AVAILABLE** | FUNCTION | OE | Α | В | С | D | |------------------|----|-------|-------|-------|-------| | | L | Input | Х | L | Н | | | | Х | Input | Н | Н | | | | L | Н | Input | Н | | 3-state inverter | | Н | L | Input | L | | | | Н | Х | L | Input | | | | Х | Н | Н | Input | | | | Н | Н | Х | Input | X = H or L # LOW-POWER ULTRA-CONFIGURABLE MULTIPLE-FUNCTION GATE WITH 3-STATE OUTPUTS SCES594A – JULY 2004 – REVISED OCTOBER 2004 #### **3-STATE MUX FUNCTIONS AVAILABLE** | FUNCTION | OE | Α | В | С | D | |-------------------------------------------------|----|---------|---------|--------------------|---| | 3-state 2-to-1, data selector MUX | | Input 1 | Input 2 | Input 1 or Input 2 | L | | 3-state 2-to-1, data selector MUX | , | Input 2 | Input 1 | Input 2 or Input 1 | L | | 3-state 2-to-1, data selector MUX, inverted out | L | Input 1 | Input 2 | Input 1 or Input 2 | Н | | 3-state 2-to-1, data selector MUX, inverted out | | Input 2 | Input 1 | Input 2 or Input 1 | Н | #### 3-STATE AND/NOR FUNCTIONS AVAILABLE | NO. OF INPUTS | AND/NAND FUNCTION | OR/NOR FUNCTION | OE | Α | В | С | D | |---------------|-------------------|-----------------------------------|----|---|---------|---------|---| | 2 | 3-state AND | 3-state NOR, both inputs inverted | | L | Input 1 | Input 2 | L | | 2 | 3-state AND | 3-state NOR, both inputs inverted | L | L | Input 2 | Input 1 | L | | NO. OF INPUTS | AND/NAND FUNCTION | OR/NOR FUNCTION | OE | Α | В | С | D | |---------------|------------------------------|------------------------------|----|---------|---------|---------|---| | 2 | 3-state AND, with A inverted | 3-state NOR, with B inverted | | Input 2 | L | Input 1 | L | | 2 | 3-state AND, with A inverted | 3-state NOR, with B inverted | L | Н | Input 1 | Input 2 | Н | | NO. OF INPUTS | AND/NAND FUNCTION | OR/NOR FUNCTION | OE | Α | В | С | D | |---------------|------------------------------|------------------------------|----|---------|---------|---------|---| | 2 | 3-state AND, with B inverted | 3-state NOR, with A inverted | | Input 1 | L | Input 2 | L | | 2 | 3-state AND, with B inverted | 3-state NOR, with A inverted | L | Н | Input 2 | Input 1 | Н | | NO. OF INPUTS | AND/NAND FUNCTION | OR/NOR FUNCTION | ŌĒ | Α | В | С | D | |---------------|-----------------------------------|-----------------|----|---------|---|---------|---| | 2 | 3-state AND, both inverted inputs | 3-state NOR | | Input 1 | Н | Input 2 | L | | 2 | 3-state AND, both inverted inputs | 3-state NOR | | Input 2 | Н | Input 1 | L | # LOW-POWER ULTRA-CONFIGURABLE MULTIPLE-FUNCTION GATE WITH 3-STATE OUTPUTS SCES594A – JULY 2004 – REVISED OCTOBER 2004 #### 3-STATE NAND/OR FUNCTIONS AVAILABLE | NO. OF INPUTS | AND/NAND FUNCTION | OR/NOR FUNCTION | OE | Α | В | С | D | |---------------|-------------------|----------------------------------|----|---|---------|---------|---| | 2 | 3-state NAND | 3-state OR, both inputs inverted | | L | Input 1 | Input 2 | Н | | 2 | 3-state NAND | 3-state OR, both inputs inverted | L | L | Input 2 | Input 1 | Н | | NO. OF INPUTS | AND/NAND FUNCTION | OR/NOR FUNCTION | ŌĒ | Α | В | С | D | |---------------|-------------------------------|-----------------------------|----|---------|---------|---------|---| | 2 | 3-state NAND, with A inverted | 3-state OR, with B inverted | | Input 2 | L | Input 1 | Н | | 2 | 3-state NAND, with A inverted | 3-state OR, with B inverted | L | Н | Input 1 | Input 2 | L | | NO. OF INPUTS | AND/NAND FUNCTION | OR/NOR FUNCTION | OE | Α | В | С | D | |---------------|-------------------------------|-----------------------------|----|---------|---------|---------|---| | 2 | 3-state NAND, with B inverted | 3-state OR, with A inverted | | Input 1 | L | Input 2 | Н | | 2 | 3-state NAND, with B inverted | 3-state OR, with A inverted | L | Н | Input 2 | Input 1 | L | | NO. OF INPUTS | AND/NAND FUNCTION | OR/NOR FUNCTION | OE | Α | В | С | D | |---------------|------------------------------------|-----------------|----|---------|---|---------|---| | 2 | 3-state NAND, both inputs inverted | 3-state OR | | Input 1 | Н | Input 2 | L | | 2 | 3-state NAND, both inputs inverted | 3-state OR | L | Input 2 | Н | Input 1 | L | #### 3-STATE XOR/XNOR FUNCTIONS AVAILABLE | FUNCTION | OE | Α | В | С | D | |-------------|----|---------|---------|---------|---------| | | L | Input 1 | Х | L | Input 2 | | | | | Input 2 | Х | L | | 3-state XOR | | Х | Input 1 | Н | Input 2 | | 3-State AOR | | Х | Input 2 | Н | Input 1 | | | | L | Н | Input 1 | Input 2 | | | | L | Н | Input 2 | Input 1 | # LOW-POWER ULTRA-CONFIGURABLE MULTIPLE-FUNCTION GATE WITH 3-STATE OUTPUTS SCES594A - JULY 2004 - REVISED OCTOBER 2004 #### 3-STATE XOR/XNOR FUNCTIONS AVAILABLE (continued) | FUNCTION | OE | Α | В | С | D | |------------------------------|----|---|---|---------|---------| | 3-state XOR, with A inverted | L | Н | L | Input 1 | Input 2 | | FUNCTION | OE | Α | В | С | D | |------------------------------|----|---|---|---------|---------| | 3-state XOR, with B inverted | L | Η | L | Input 1 | Input 2 | | FUNCTION | OE | Α | В | С | D | |--------------|----|---|---|---------|---------| | 3-state XNOR | | Н | L | Input 1 | Input 2 | | 3-state XNOR | L | Н | L | Input 2 | Input 1 | ### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | Supply voltage range, V <sub>CC</sub> | 0.5 V to 4.6 V | |-----------------------------------------------------------------------|----------------------------------| | Input voltage range, V <sub>I</sub> (see Note 1) | 0.5 V to 4.6 V | | Voltage range applied to any output in the high-impedance or power-or | off state, V <sub>O</sub> | | (see Note 1) | 0.5 V to 4.6 V | | Output voltage range in the high or low state, VO (see Note 1) | 0.5 V to V <sub>CC</sub> + 0.5 V | | Input clamp current, I <sub>IK</sub> (V <sub>I</sub> < 0) | | | Output clamp current, I <sub>OK</sub> (V <sub>O</sub> < 0) | | | Continuous output current, IO | | | Continuous current through V <sub>CC</sub> or GND | ±50 mA | | Package thermal impedance, θ <sub>JA</sub> (see Note 2): DCT package | 220°C/W | | DCU package | 227°C/W | | YEP/YZP package . | 102°C/W | | Storage temperature range, T <sub>stg</sub> | –65°C to 150°C | <sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed. 2. The package thermal impedance is calculated in accordance with JESD 51-7. ### recommended operating conditions (see Note 3) | | | | MIN | MAX | UNIT | | |----------------|------------------------------------|--------------------------------------------|-----|------|------|--| | VCC | Supply voltage | | 0.8 | 3.6 | V | | | ٧ <sub>I</sub> | Input voltage | | 0 | 3.6 | V | | | V - | Output voltage | Active state | 0 | VCC | V | | | VO | Output voltage | 3-state | 0 | 3.6 | ٧ | | | | | V <sub>CC</sub> = 0.8 V | | -20 | μΑ | | | | | V <sub>CC</sub> = 1.1 V | | -1.1 | | | | 1 | H High-level output current | $V_{CC} = 1.4 \text{ V}$ | | -1.7 | | | | ЮН | | $V_{CC} = 1.65$ | | -1.9 | mA | | | | | V <sub>CC</sub> = 2.3 V | | -3.1 | | | | | | V <sub>CC</sub> = 3 V | | -4 | | | | | | V <sub>CC</sub> = 0.8 V | | 20 | μΑ | | | | | V <sub>CC</sub> = 1.1 V | | 1.1 | | | | 1 | Low lovel output ourrent | V <sub>CC</sub> = 1.4 V | | 1.7 | | | | loL | Low-level output current | V <sub>CC</sub> = 1.65 V | | 1.9 | mA | | | | | V <sub>CC</sub> = 2.3 V | | 3.1 | | | | | | VCC = 3 V | | 4 | | | | Δt/Δν | Input transition rise or fall rate | $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$ | | 200 | ns/V | | | T <sub>A</sub> | Operating free-air temperature | | -40 | 85 | °C | | NOTE 3: All unused inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. # electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | | TEGT COMPLETIONS | ., | T <sub>A</sub> = 25 | °C | T <sub>A</sub> = -40°0 | C TO 85°C | | |----------------------------------------------------|---------------------------------------|----------------|------------------------|---------------------|------------------------|---------------------|------| | PARAMETER | TEST CONDITIONS | Vcc | MIN | MAX | MIN | MAX | UNIT | | | | 0.8 V | 0.3 | 0.6 | 0.3 | 0.6 | | | | | 1.1 V | 0.53 | 0.9 | 0.53 | 0.9 | | | V <sub>T+</sub> | | 1.4 V | 0.74 | 1.11 | 0.74 | 1.11 | ., | | Positive-going input threshold voltage | | 1.65 V | 0.91 | 1.29 | 0.91 | 1.29 | V | | | | 2.3 V | 1.37 | 1.77 | 1.37 | 1.77 | | | | | 3 V | 1.88 | 2.29 | 1.88 | 2.29 | | | | | 0.8 V | 0.1 | 0.6 | 0.1 | 0.6 | | | V <sub>T</sub> _ | | 1.1 V | 0.26 | 0.65 | 0.26 | 0.65 | | | Negative-going | | 1.4 V | 0.39 | 0.75 | 0.39 | 0.75 | ., | | input threshold | | 1.65 V | 0.47 | 0.84 | 0.47 | 0.84 | V | | voltage | | 2.3 V | 0.69 | 1.04 | 0.69 | 1.04 | | | | | 3 V | 0.88 | 1.24 | 0.88 | 1.24 | | | | | 0.8 V | 0.07 | 0.5 | 0.07 | 0.5 | | | | | 1.1 V | 0.08 | 0.46 | 0.08 | 0.46 | | | ΔVT | | 1.4 V | 0.18 | 0.56 | 0.18 | 0.56 | ., | | Hysteresis<br>(V <sub>T+</sub> – V <sub>T</sub> _) | | 1.65 V | 0.27 | 0.66 | 0.27 | 0.66 | V | | (*1+ *1-) | | 2.3 V | 0.53 | 0.92 | 0.53 | 0.92 | | | | | 3 V | 0.79 | 1.31 | 0.79 | 1.31 | | | | I <sub>OH</sub> = -20 μA | 0.8 V to 3.6 V | V <sub>CC</sub> - 0.1 | | V <sub>CC</sub> - 0.1 | | | | | I <sub>OH</sub> = -1.1 mA | 1.1 V | 0.75 × V <sub>CC</sub> | | 0.7×V <sub>CC</sub> | | | | | $I_{OH} = -1.7 \text{ mA}$ | 1.4 V | 1.11 | | 1.03 | | | | ., | $I_{OH} = -1.9 \text{ mA}$ | 1.65 V | 1.32 | | 1.3 | | ., | | VOH | $I_{OH} = -2.3 \text{ mA}$ | 0.01/ | 2.05 | | 1.97 | | V | | | $I_{OH} = -3.1 \text{ mA}$ | 2.3 V | 1.9 | | 1.85 | | | | | $I_{OH} = -2.7 \text{ mA}$ | 2.1 | 2.72 | | 2.67 | | | | | $I_{OH} = -4 \text{ mA}$ | 3 V | 2.6 | | 2.55 | | | | | I <sub>OL</sub> = 20 μA | 0.8 V to 3.6 V | | 0.1 | | 0.1 | | | | I <sub>OL</sub> = 1.1 mA | 1.1 V | ( | 0.3×V <sub>CC</sub> | | 0.3×V <sub>CC</sub> | | | | I <sub>OL</sub> = 1.7 mA | 1.4 V | | 0.31 | | 0.37 | | | ., | I <sub>OL</sub> = 1.9 mA | 1.65 V | | 0.31 | | 0.35 | ., | | VOL | I <sub>OL</sub> = 2.3 mA | 0.01/ | | 0.31 | | 0.33 | V | | | I <sub>OL</sub> = 3.1 mA | 2.3 V | | 0.44 | | 0.45 | | | | I <sub>OL</sub> = 2.7 mA | 0.17 | | 0.31 | | 0.33 | | | | I <sub>OL</sub> = 4 mA | 3 V | | 0.44 | | 0.45 | | | I <sub>I</sub> All inputs | $V_I = GND \text{ to } 3.6 \text{ V}$ | 0 V to 3.6 V | | 0.1 | | 0.5 | μΑ | | l <sub>off</sub> | $V_I$ or $V_O = 0$ V to 3.6 V | 0 V | | 0.2 | | 0.6 | μΑ | | $\Delta I_{ ext{Off}}$ | $V_I$ or $V_O = 0 V$ to 3.6 V | 0 V to 0.2 V | | 0.2 | | 0.6 | μΑ | | I <sub>OZ</sub> | $V_O = V_{CC}$ or GND | 3.6 V | | 0.1 | | 0.5 | μА | # LOW-POWER ULTRA-CONFIGURABLE MULTIPLE-FUNCTION GATE WITH 3-STATE OUTPUTS SCES594A – JULY 2004 – REVISED OCTOBER 2004 ### electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) (continued) | PARAMETER | | TEST CONDITIONS | | VCC | T <sub>A</sub> = 25°C | | | T <sub>A</sub> = -<br>TO 8 | UNIT | | |-----------|-------------------------------------------|----------------------------------------------------------------------------------|--------------------|----------------|-----------------------|-----|-----|----------------------------|------|-----| | | | | | MIN | TYP | MAX | MIN | MAX | | | | ICC | | $V_I = GND \text{ or } (V_{CC} \text{ to } 3.6 \text{ V}), \overline{OE} = GND,$ | IO = 0 | 0.8 V to 3.6 V | | | 0.5 | | 0.9 | μΑ | | | Data inputs | -Vaa - 0.6.V.† | | 227 | | | 40 | | 50 | | | ∆lcc | $V_I = V_{CC} - 0.6 \text{ V,}^{\dagger}$ | VI = VCC - 0.6 V, I | I <sub>O</sub> = 0 | 3.3 V | | 110 | | | 120 | μΑ | | | All inputs | $V_I = GND \text{ to } 3.6 \text{ V}, \overline{OE} = V_{CC}^{\ddagger}$ | | 0.8 V to 3.6 V | | 0 | | | | nA | | | | V V - OND | | 0 V | | 1.5 | | | | . [ | | Ci | | V <sub>I</sub> = V <sub>CC</sub> or GND | | 3.6 V | | 1.5 | | | | pF | | Со | | $V_O = V_{CC}$ or GND | | 3.6 V | | 3 | | | | pF | <sup>&</sup>lt;sup>†</sup> One input at V<sub>CC</sub> – 0.6 V, other input at V<sub>CC</sub> or GND ### switching characteristics over recommended operating free-air temperature range, C<sub>L</sub> = 5 pF (unless otherwise noted) (see Figures 3 and 4) | PARAMETER | FROM | TO<br>(OUTPUT) | Vcc | Т, | դ = 25°C | ; | T <sub>A</sub> = - | UNIT | | |------------------|---------------|----------------|----------------|-----|----------|------|--------------------|------|---------| | | (INPUT) | (001P01) | | MIN | TYP | MAX | MIN | MAX | | | | | | 0.8 V | | 32 | | | | | | | | | 1.2 V ± 0.1 V | 0.5 | 9.9 | 20.1 | 0.5 | 26.6 | | | • . | A D C == D | Y | 1.5 V ± 0.1 V | 1.4 | 6.6 | 11.9 | 0.5 | 16.8 | | | <sup>t</sup> pd | A, B, C, or D | Ť | 1.8 V ± 0.15 V | 1.8 | 5.3 | 8.9 | 1 | 13 | ns | | | | | 2.5 V ± 0.2 V | 2.1 | 3.9 | 5.8 | 1.3 | 8.9 | | | | | | 3.3 V ± 0.3 V | 1.9 | 3.3 | 4.8 | 1.2 | 7.4 | | | | ŌĒ | Y | 0.8 V | | 35 | | | | ns | | | | | 1.2 V ± 0.1 V | 0.6 | 11.1 | 21.7 | 0.5 | 25.2 | | | 4 | | | 1.5 V ± 0.1 V | 2.3 | 7.4 | 12.6 | 1.4 | 16.4 | | | <sup>t</sup> en | | | 1.8 V ± 0.15 V | 2 | 5.7 | 9.4 | 1.1 | 12.8 | | | | | | 2.5 V ± 0.2 V | 2.1 | 4.1 | 6.2 | 1.2 | 8.5 | | | | | | 3.3 V ± 0.3 V | 1.9 | 3.4 | 5 | 1.1 | 6.7 | | | | | | 0.8 V | | 9.8 | | | | | | | | | 1.2 V ± 0.1 V | 1.4 | 4.5 | 7.7 | 1.5 | 8.2 | | | 4 | <del></del> | ., | 1.5 V ± 0.1 V | 1.7 | 3.2 | 4.8 | 1.7 | 6 | | | <sup>t</sup> dis | ŌĒ | Y | 1.8 V ± 0.15 V | 1.5 | 3 | 4.7 | 1.3 | 6.1 | ns<br>- | | | | | 2.5 V ± 0.2 V | 0.9 | 1.9 | 3 | 0.7 | 4.2 | | | | | | 3.3 V ± 0.3 V | 0.8 | 2.5 | 4.4 | 0.7 | 4.5 | | <sup>‡</sup> To show ICC is very low when the input-disable feature is enabled. switching characteristics over recommended operating free-air temperature range, $C_L$ = 10 pF (unless otherwise noted) (see Figures 3 and 4) | PARAMETER | FROM | TO | VCC | T, | <b>Վ = 25°C</b> | ; | T <sub>A</sub> = -40°C<br>TO 85°C | | UNIT | |------------------|---------------|----------|----------------|-----|-----------------|------|-----------------------------------|------|------| | | (INPUT) | (OUTPUT) | | MIN | TYP | MAX | MIN | MAX | | | | | | 0.8 V | | 36 | | | | | | | | | 1.2 V ± 0.1 V | 0.4 | 10.7 | 21.1 | 0.7 | 29.8 | | | + . | A D C == D | Y | 1.5 V ± 0.1 V | 2 | 7.2 | 12.6 | 1.1 | 18.5 | | | <sup>t</sup> pd | A, B, C, or D | Ť | 1.8 V ± 0.15 V | 2.3 | 5.8 | 9.5 | 1.5 | 14.5 | ns | | | | | 2.5 V ± 0.2 V | 2.5 | 4.4 | 6.3 | 1.7 | 10.5 | | | | | | 3.3 V ± 0.3 V | 2.3 | 3.7 | 5.2 | 1.5 | 8.4 | | | | ŌĒ | Y | 0.8 V | | 0 | | | | | | | | | 1.2 V ± 0.1 V | 1.4 | 12.1 | 22.8 | 0.8 | 29.3 | ns | | | | | 1.5 V ± 0.1 V | 2.8 | 8 | 13.3 | 2 | 18.7 | | | <sup>t</sup> en | | | 1.8 V ± 0.15 V | 2.5 | 6.2 | 10 | 1.6 | 14.8 | | | | | | 2.5 V ± 0.2 V | 2.5 | 4.5 | 6.7 | 1.6 | 9.9 | | | | | | 3.3 V ± 0.3 V | 2.3 | 3.8 | 5.4 | 1.5 | 8.2 | | | | | | 0.8 V | | 0 | | | | | | | | | 1.2 V ± 0.1 V | 2 | 5.6 | 9.3 | 2 | 10 | | | <b>.</b> | ŌĒ | , , | 1.5 V ± 0.1 V | 2.5 | 4.1 | 5.8 | 2.4 | 7.6 | | | <sup>t</sup> dis | OE . | Y | 1.8 V ± 0.15 V | 2.9 | 4.2 | 5.7 | 2.7 | 7.9 | - I | | | | | 2.5 V ± 0.2 V | 1.1 | 2.7 | 4.4 | 1.1 | 5.5 | | | | | | 3.3 V ± 0.3 V | 1.9 | 3.5 | 5.2 | 1.9 | 5.8 | | switching characteristics over recommended operating free-air temperature range, $C_L$ = 15 pF (unless otherwise noted) (see Figures 3 and 4) | PARAMETER | FROM | TO | VCC | T, | 4 = 25°C | ; | T <sub>A</sub> = -40°C<br>TO 85°C | | UNIT | | |------------------|---------------|----------|----------------|-------------|----------|------|-----------------------------------|--------------|------|--| | | (INPUT) | (OUTPUT) | | MIN TYP MAX | | MAX | MIN | MAX | /X | | | | | | 0.8 V | | 38 | | | | | | | | | | 1.2 V ± 0.1 V | 0.9 | 11.4 | 22 | 0.5 | 30.8 | | | | | A D C == D | Y | 1.5 V ± 0.1 V | 2.5 | 7.8 | 13.2 | 1.6 | 19.2 | | | | <sup>t</sup> pd | A, B, C, or D | Ť | 1.8 V ± 0.15 V | 2.7 | 6.3 | 10 | 1.9 | 15.1 | ns | | | | | | 2.5 V ± 0.2 V | 2.8 | 4.7 | 6.6 | 2 | 10.8 | | | | | | | 3.3 V ± 0.3 V | 2.6 | 4 | 5.5 | 1.8 | 8.8 | | | | | | | 0.8 V | | 44 | | | | | | | | | | 1.2 V ± 0.1 V | 1.8 | 13 | 24.2 | 1.3 | 30.6 | | | | | ŌĒ | Y | 1.5 V ± 0.1 V | 3.2 | 8.6 | 14.1 | 2.4 | 19.5 | | | | t <sub>en</sub> | OE . | Ť | 1.8 V ± 0.15 V | 2.9 | 6.7 | 10.6 | 2 | 15.4 | ns | | | | | | 2.5 V ± 0.2 V | 2.8 | 4.9 | 7 | 1.9 | 15.4<br>10.3 | 1 | | | | | | 3.3 V ± 0.3 V | 2.6 | 4.1 | 5.7 | 1.8 | 8.6 | | | | | | | 0.8 V | | 13 | | | | | | | | | | 1.2 V ± 0.1 V | 2.7 | 6.3 | 9.9 | 2.8 | 10.7 | | | | | ŌĒ | ., | 1.5 V ± 0.1 V | 3.2 | 4.6 | 6.1 | 3.1 | 8 | | | | <sup>t</sup> dis | UE | Y | 1.8 V ± 0.15 V | 3.2 | 4.8 | 6.6 | 3 | 8.8 | ns | | | | | | 2.5 V ± 0.2 V | 2.2 | 3.4 | 4.7 | 2 | 6 | | | | | | | 3.3 V ± 0.3 V | 2.4 | 4.4 | 6.5 | 2.3 | 7.2 | | | # switching characteristics over recommended operating free-air temperature range, $C_L$ = 30 pF (unless otherwise noted) (see Figures 3 and 4) | PARAMETER | FROM | TO (OUTDUT) | Vcc | | | T <sub>A</sub> = - | | UNIT | | |------------------|---------------|-------------|----------------|-----|------|--------------------|-----|------|----| | | (INPUT) | (OUTPUT) | | MIN | TYP | MAX | MIN | MAX | | | | | | 0.8 V | | 48 | | | | | | | | | 1.2 V ± 0.1 V | 3.1 | 14 | 4 24.9 2.6 36.1 | | | | | | A D C D | Y | 1.5 V ± 0.1 V | 4.2 | 9.6 | 15.1 | 3.3 | 23.1 | | | <sup>t</sup> pd | A, B, C, or D | Ť | 1.8 V ± 0.15 V | 4.1 | 7.9 | 11.7 | 3.3 | 18 | ns | | | | | 2.5 V ± 0.2 V | 4.1 | 5.9 | 7.9 | 3.1 | 12.7 | | | | | | 3.3 V ± 0.3 V | 3.7 | 5.1 | 6.7 | 2.8 | 10.4 | | | | | | 0.8 V | | 50 | | | | | | | | | 1.2 V ± 0.1 V | 4.4 | 16 | 27.6 | 3.9 | 36.8 | | | | ŌĒ | V | 1.5 V ± 0.1 V | 5.3 | 10.7 | 16.2 | 4.3 | 23.6 | | | <sup>t</sup> en | OE . | Y | 1.8 V ± 0.15 V | 4.6 | 8.5 | 12.4 | 3.6 | 18.6 | ns | | | | | 2.5 V ± 0.2 V | 4.2 | 6.3 | 8.5 | 3.2 | 12.6 | | | | | | 3.3 V ± 0.3 V | 3.8 | 5.4 | 7.1 | 2.9 | 10.2 | | | | | | 0.8 V | | 19 | | | | | | | | | 1.2 V ± 0.1 V | 6 | 10.1 | 14.2 | 6 | 14.6 | | | <br> | ŌĒ | ., | 1.5 V ± 0.1 V | 5.1 | 7.4 | 10.6 | 5 | 10.1 | | | <sup>t</sup> dis | OE . | Υ | 1.8 V ± 0.15 V | 5.5 | 8.6 | 11.6 | 5.5 | 12.1 | ns | | | | | 2.5 V ± 0.2 V | 3.3 | 5.9 | 8.3 | 3.3 | 8.9 | | | | | | 3.3 V ± 0.3 V | 6 | 8.7 | 10.9 | 5.9 | 11.8 | | ## operating characteristics, $T_A = 25^{\circ}C$ | | PARAMETER | TEST CONDITIONS | v <sub>cc</sub> | TYP | UNIT | | |-----------------|--------------------------------|-------------------|-----------------|----------------|------|-----------| | | | | | 0.8 V | 4 | | | | | | | 1.2 V ± 0.1 V | 4 | | | | | Outnote enabled | | 1.5 V ± 0.1 V | 4 | | | | | Outputs enabled | | 1.8 V ± 0.15 V | 4 | | | | | | | 2.5 V ± 0.2 V | 5 | -<br>- pF | | C . | Davier discination constitutes | | 6 40 MH- | 3.3 V ± 0.3 V | 5 | | | C <sub>pd</sub> | Power dissipation capacitance | | f = 10 MHz | 0.8 V | 0 | | | | | | | 1.2 V ± 0.1 V | 0 | | | | | Outrotte disabled | | 1.5 V ± 0.1 V | 0 | | | | | Outputs disabled | | 1.8 V ± 0.15 V | 0 | | | | | | | 2.5 V ± 0.2 V | 0 | | | | | | | 3.3 V ± 0.3 V | 0 | | SCES594A - JULY 2004 - REVISED OCTOBER 2004 # PARAMETER MEASUREMENT INFORMATION (Propagation Delays, Setup and Hold Times, and Pulse Width) **LOAD CIRCUIT** | | V <sub>CC</sub> = 0.8 V | V <sub>CC</sub> = 1.2 V<br>± 0.1 V | V <sub>CC</sub> = 1.5 V<br>± 0.1 V | V <sub>CC</sub> = 1.8 V<br>± 0.15 V | V <sub>CC</sub> = 2.5 V<br>± 0.2 V | V <sub>CC</sub> = 3.3 V<br>± 0.3 V | |----------------|-------------------------|------------------------------------|------------------------------------|-------------------------------------|------------------------------------|------------------------------------| | CL | 5, 10, 15, 30 pF | | V <sub>M</sub> | V <sub>CC</sub> /2 | | V <sub>I</sub> | V <sub>CC</sub> | NOTES: A. C<sub>L</sub> includes probe and jig capacitance. - B. All input pulses are supplied by generators having the following characteristics: PRR $\leq$ 10 MHz, $Z_O = 50 \Omega$ , for propagation delays $t_r/t_f = 3$ ns, for setup and hold times and pulse width $t_r/t_f = 1.2$ ns. - C. The outputs are measured one at a time, with one transition per measurement. - D. t<sub>PLH</sub> and t<sub>PHL</sub> are the same as t<sub>pd</sub>. - E. All parameters and waveforms are not applicable to all devices. Figure 3. Load Circuit and Voltage Waveforms #### PARAMETER MEASUREMENT INFORMATION (Enable and Disable Times) | TEST | <b>S</b> 1 | |-----------|-------------------| | tPLZ/tPZL | 2×V <sub>CC</sub> | | tPHZ/tPZH | GND | LOAD CIRCUIT | | V <sub>CC</sub> = 0.8 V | V <sub>CC</sub> = 1.2 V<br>± 0.1 V | V <sub>CC</sub> = 1.5 V<br>± 0.1 V | V <sub>CC</sub> = 1.8 V<br>± 0.15 V | V <sub>CC</sub> = 2.5 V<br>± 0.2 V | V <sub>CC</sub> = 3.3 V<br>± 0.3 V | |----------------|-------------------------|------------------------------------|------------------------------------|-------------------------------------|------------------------------------|------------------------------------| | C <sub>L</sub> | 5, 10, 15, 30 pF | | V <sub>M</sub> | V <sub>CC</sub> /2 | | V <sub>I</sub> | V <sub>CC</sub> | | V <sub>∆</sub> | 0.1 V | 0.1 V | 0.1 V | 0.15 V | 0.15 V | 0.3 V | NOTES: A. C<sub>L</sub> includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR $\leq$ 10 MHz, Z<sub>O</sub> = 50 $\Omega$ , t<sub>f</sub>/t<sub>f</sub> = 3 ns. - D. The outputs are measured one at a time, with one transition per measurement. - E. tpl 7 and tpH7 are the same as tdis. - F. tpzL and tpzH are the same as ten. - G. All parameters and waveforms are not applicable to all devices. Figure 4. Load Circuit and Voltage Waveforms #### PACKAGE OPTION ADDENDUM 25-Feb-2005 #### **PACKAGING INFORMATION** | Orderable Device | Status <sup>(1)</sup> | Package<br>Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan <sup>(2)</sup> | Lead/Ball Finish | MSL Peak Temp <sup>(3)</sup> | |------------------|-----------------------|-----------------|--------------------|------|----------------|-------------------------|------------------|------------------------------| | SN74AUP1G99DCTR | ACTIVE | SM8 | DCT | 8 | 3000 | None | CU SNPB | Level-1-235C-UNLIM | | SN74AUP1G99DCTT | ACTIVE | SM8 | DCT | 8 | 250 | None | CU SNPB | Level-1-235C-UNLIM | | SN74AUP1G99DCUR | ACTIVE | US8 | DCU | 8 | 3000 | Pb-Free<br>(RoHS) | CU NIPDAU | Level-1-260C-UNLIM | | SN74AUP1G99DCUT | ACTIVE | US8 | DCU | 8 | 250 | Pb-Free<br>(RoHS) | CU NIPDAU | Level-1-260C-UNLIM | (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. None: Not vet available Lead (Pb-Free). Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight. (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. ### DCT (R-PDSO-G8) ### PLASTIC SMALL-OUTLINE PACKAGE NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice.C. Body dimensions do not include mold flash or protrusion - D. Falls within JEDEC MO-187 variation DA. # DCU (R-PDSO-G8) # PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN) NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion. - D. Falls within JEDEC MO-187 variation CA. #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | Products | | Applications | | |------------------|------------------------|--------------------|---------------------------| | Amplifiers | amplifier.ti.com | Audio | www.ti.com/audio | | Data Converters | dataconverter.ti.com | Automotive | www.ti.com/automotive | | DSP | dsp.ti.com | Broadband | www.ti.com/broadband | | Interface | interface.ti.com | Digital Control | www.ti.com/digitalcontrol | | Logic | logic.ti.com | Military | www.ti.com/military | | Power Mgmt | power.ti.com | Optical Networking | www.ti.com/opticalnetwork | | Microcontrollers | microcontroller.ti.com | Security | www.ti.com/security | | | | Telephony | www.ti.com/telephony | | | | Video & Imaging | www.ti.com/video | | | | Wireless | www.ti.com/wireless | Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265