5-TAP SMD DELAY LINE $T_D/T_R = 3$ (SERIES 1518) ### **FEATURES** - 5 taps of equal delay increment - Delays to 200ns - Low profile - Epoxy encapsulated - Meets or exceeds MIL-D-23859C | IN | 1 | 14 | Þ | N/C | |-----|---|----|---|-----| | N/C | 2 | 13 | Þ | T1 | | T2 | 3 | 12 | Þ | N/C | | N/C | 4 | 11 | Þ | T3 | | T4 | 5 | 10 | Þ | N/C | | T5 | 6 | 9 | þ | N/C | | GND | 7 | 8 | þ | N/C | | | | | | | ## **PACKAGES** IN Signal Input T1-T5 Tap Outputs GND Ground Note: Standard pinout shown Alt. pinout available ### **FUNCTIONAL DESCRIPTION** The 1518-series device is a fixed, single-input, five-output, passive delay line. The signal input (IN) is reproduced at the outputs (T1-T5) in equal increments. The delay from IN to T5 ($T_{\rm D}$) and the characteristic impedance of the line (Z) are determined by the dash number. The rise time ($T_{\rm R}$) of the line is 30% of $T_{\rm D}$, and the 3dB bandwidth is given by 1.05 / $T_{\rm D}$. The device is available in a 14-pin SMD with two pinout options. Part numbers are constructed according to the scheme shown at right. For example, 1518-101-500A is a 100ns, 50Ω delay line with pinout code A. Similarly, 1518-151-501 a is 150ns, 500Ω delay line with standard pinout. ### PART NUMBER CONSTRUCTION 1518 - xxx - zzz p ### **DELAY TIME** Expressed in nanoseconds (ns) First two digits are significant figures Last digit specifies # of zeros to follow ### **IMPEDANCE** Expressed in nanoseconds (ns) First two digits are significant figures Last digit specifies # of zeros to follow # PINOUT CODE See Table Omit for STD pinout ### **SERIES SPECIFICATIONS** Dielectric breakdown: 50 Vdc Distortion @ output: 10% max. Operating temperature: -55°C to +125°C Storage temperature: -55°C to +125°C Temperature coefficient: 100 PPM/°C **Package Dimensions** ### **DELAY SPECIFICATIONS** | I | T _D | Tı | T _R | ATTENUATION (%) TYPICAL | | | | | |---|----------------|------|----------------|-------------------------|--------|--------|--------|--------| | ı | (ns) | (ns) | (ns) | Z=50Ω | Z=100Ω | Z=200Ω | Z=300Ω | Z=500Ω | | ı | 5 | 1.0 | 3.0 | N/A | 5 | N/A | N/A | N/A | | ı | 10 | 2.0 | 4.0 | 3 | 5 | 5 | N/A | N/A | | ı | 15 | 3.0 | 5.0 | 3 | 5 | 5 | N/A | N/A | | ı | 20 | 4.0 | 6.0 | 3 | 5 | 5 | 5 | N/A | | ı | 25 | 5.0 | 7.0 | 3 | 5 | 5 | 5 | 7 | | ı | 30 | 6.0 | 10.0 | 3 | 5 | 5 | 5 | 7 | | ı | 40 | 8.0 | 13.0 | 3 | 5 | 5 | 5 | 7 | | ı | 50 | 10.0 | 15.0 | 3 | 5 | 5 | 7 | 7 | | ı | 60 | 12.0 | 20.0 | 3 | 5 | 6 | 7 | 8 | | ı | 75 | 15.0 | 25.0 | 3 | 5
5 | 6 | 7 | 8 | | ı | 80 | 16.0 | 26.0 | 4 | 5 | 6 | 7 | 8 | | ı | 100 | 20.0 | 30.0 | 4 | 5 | 6 | 7 | 8 | | | 110 | 22.0 | 32.0 | 4 | 5 | 6 | 7 | 8 | | ١ | 125 | 25.0 | 40.0 | 4 | 5 | 6 | 7 | 8 | | | 150 | 30.0 | 50.0 | N/A | 5 | 8 | 10 | 10 | | | 180 | 36.0 | 60.0 | N/A | 7 | 8 | 10 | 10 | | ١ | 200 | 50.0 | 70.0 | N/A | 8 | 10 | 12 | 12 | Notes: T_I represents nominal tap-to-tap delay increment Tolerance on T_D = $\pm 5\%$ or ± 2 ns, whichever is greater Tolerance on T_I = $\pm 5\%$ or ± 1 ns, whichever is greater "N/A" indicates that delay is not available at this Z ## PINOUT CODES | CODE | Z | T1 | T2 | Т3 | T4 | T5 | GND | |------|---|----|----|----|----|----|------| | STD | 1 | 13 | 3 | 11 | 5 | 6 | 7 | | Δ | 1 | 12 | 4 | 10 | 6 | 7 | 8 14 | ©1997 Data Delay Devices # PASSIVE DELAY LINE TEST SPECIFICATIONS ### **TEST CONDITIONS** INPUT: OUTPUT: Ambient Temperature: $25^{\circ}\text{C} \pm 3^{\circ}\text{C}$ R_{load}: $10\text{M}\Omega$ Input Pulse: High = 3.0V typical C_{load}: 10pf Low = 0.0V typical **Threshold:** 50% (Rising & Falling) **Source Impedance:** 50Ω Max. Rise/Fall Time: 3.0 ns Max. (measured at 10% and 90% levels) **NOTE:** The above conditions are for test only and do not in any way restrict the operation of the device. **Timing Diagram For Testing** **Test Setup**