5-TAP SMD DELAY LINE $T_D/T_R = 3$ (SERIES 1518)

FEATURES

- 5 taps of equal delay increment
- Delays to 200ns
- Low profile
- Epoxy encapsulated
- Meets or exceeds MIL-D-23859C

IN	1	14	Þ	N/C
N/C	2	13	Þ	T1
T2	3	12	Þ	N/C
N/C	4	11	Þ	T3
T4	5	10	Þ	N/C
T5	6	9	þ	N/C
GND	7	8	þ	N/C

PACKAGES

IN Signal Input T1-T5 Tap Outputs GND Ground

Note: Standard pinout shown Alt. pinout available

FUNCTIONAL DESCRIPTION

The 1518-series device is a fixed, single-input, five-output, passive delay line. The signal input (IN) is reproduced at the outputs (T1-T5) in equal increments. The delay from IN to T5 ($T_{\rm D}$) and the characteristic impedance of the line (Z) are determined by the dash number. The rise time ($T_{\rm R}$) of the line is 30% of $T_{\rm D}$, and the 3dB bandwidth is given by 1.05 / $T_{\rm D}$. The device is available in a 14-pin SMD with two pinout options.

Part numbers are constructed according to the scheme shown at right. For example, 1518-101-500A is a 100ns, 50Ω delay line with pinout code A. Similarly, 1518-151-501 a is 150ns, 500Ω delay line with standard pinout.

PART NUMBER CONSTRUCTION

1518 - xxx - zzz p

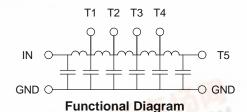
DELAY TIME

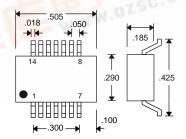
Expressed in nanoseconds (ns)
First two digits are significant figures
Last digit specifies # of zeros to follow

IMPEDANCE

Expressed in nanoseconds (ns)
First two digits are significant figures
Last digit specifies # of zeros to follow

PINOUT CODE


See Table Omit for STD pinout


SERIES SPECIFICATIONS

Dielectric breakdown: 50 Vdc
 Distortion @ output: 10% max.

Operating temperature: -55°C to +125°C
 Storage temperature: -55°C to +125°C

Temperature coefficient: 100 PPM/°C

Package Dimensions

DELAY SPECIFICATIONS

I	T _D	Tı	T _R	ATTENUATION (%) TYPICAL				
ı	(ns)	(ns)	(ns)	Z=50Ω	Z=100Ω	Z=200Ω	Z=300Ω	Z=500Ω
ı	5	1.0	3.0	N/A	5	N/A	N/A	N/A
ı	10	2.0	4.0	3	5	5	N/A	N/A
ı	15	3.0	5.0	3	5	5	N/A	N/A
ı	20	4.0	6.0	3	5	5	5	N/A
ı	25	5.0	7.0	3	5	5	5	7
ı	30	6.0	10.0	3	5	5	5	7
ı	40	8.0	13.0	3	5	5	5	7
ı	50	10.0	15.0	3	5	5	7	7
ı	60	12.0	20.0	3	5	6	7	8
ı	75	15.0	25.0	3	5 5	6	7	8
ı	80	16.0	26.0	4	5	6	7	8
ı	100	20.0	30.0	4	5	6	7	8
	110	22.0	32.0	4	5	6	7	8
١	125	25.0	40.0	4	5	6	7	8
	150	30.0	50.0	N/A	5	8	10	10
	180	36.0	60.0	N/A	7	8	10	10
١	200	50.0	70.0	N/A	8	10	12	12

Notes: T_I represents nominal tap-to-tap delay increment Tolerance on T_D = $\pm 5\%$ or ± 2 ns, whichever is greater Tolerance on T_I = $\pm 5\%$ or ± 1 ns, whichever is greater "N/A" indicates that delay is not available at this Z

PINOUT CODES

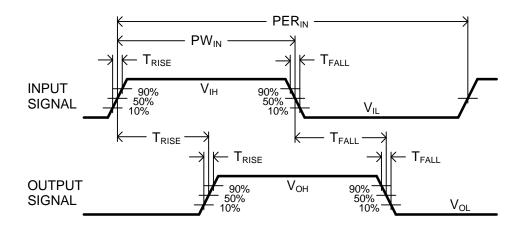
CODE	Z	T1	T2	Т3	T4	T5	GND
STD	1	13	3	11	5	6	7
Δ	1	12	4	10	6	7	8 14

©1997 Data Delay Devices

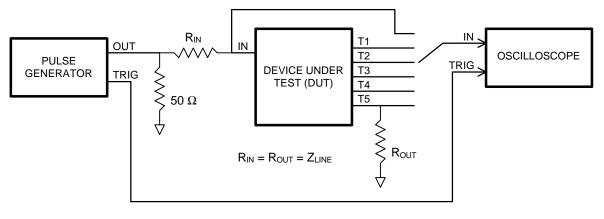
PASSIVE DELAY LINE TEST SPECIFICATIONS

TEST CONDITIONS

INPUT: OUTPUT:


Ambient Temperature: $25^{\circ}\text{C} \pm 3^{\circ}\text{C}$ R_{load}: $10\text{M}\Omega$ Input Pulse: High = 3.0V typical C_{load}: 10pf

Low = 0.0V typical **Threshold:** 50% (Rising & Falling)


Source Impedance: 50Ω Max.

Rise/Fall Time: 3.0 ns Max. (measured at 10% and 90% levels)

NOTE: The above conditions are for test only and do not in any way restrict the operation of the device.

Timing Diagram For Testing

Test Setup