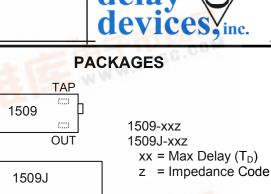
查询1509-XXZ供应商

MECHANICALLY VARIABLE **DELAY LINE** SERIES 1509 & 1509J)


FEATURES

- Ideal for "Set and Forget" applications
- Multi-turn adjustment screw (1509: 20 turns, 1509J: 60 turns)
- Stackable for PC board economy .
- Fits standard 14-pin DIP socket (1509) .
- 20mil x 10mil flat leads (1509)
- . #20 gauge leads (1509J)
- **Resolution:**
- **Dielectric breakdown:** 50 Vdc
- Temperature coefficient: 200 PPM/°C

FUNCTIONAL DESCRIPTION

The 1509- and 1509J-series devices are mechanically variable, passive delay lines. The signal input (IN) is reproduced at the tap output (TAP), shifted by an amount which can be adjusted between 0 and T_D, where T_D is the device dash number. The fixed output (OUT) reproduces the input, delayed by T_D, and must be terminated to match the characteristic impedance of the line, which is

As low as 0.15ns

dat

捷多邦,专业PCB打样工厂,24小时加急出货

OUT TAP

PIN DESCRIPTIONS

1509/1509J

- IN Signal Input
- TAP Variable Output
- OUT **Fixed Output**
- GND Ground

given by the letter code that follows the dash number (See Table). The tap output is unbuffered. The 3dB bandwidth of the line is given by 0.35 / T_R, where T_R is the rise time of the line (See Table).

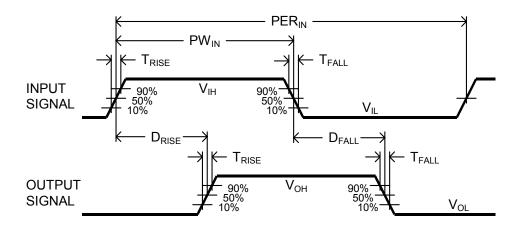
GND

.....

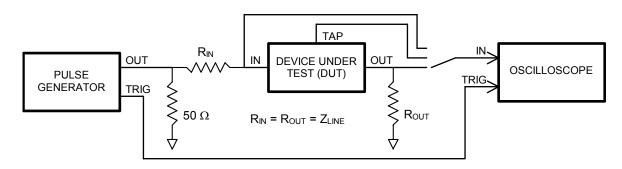
IN

GND IN

SERIES SPECIFICATIONS


DASH NUMBER SPECIFICATIONS O TAP RDC Max Dly Part TR Imped Number (ns) (ns) (Ω) (Ω) O OUT 1509-05B IN 5 3 100 0.4 8 1509-20C 20 10 200 1509-20D 20 8 250 1.0 1509J-10B 100 0.8 GND C 4 1503J-40C 40 g 200 1.5 **Functional Diagram** .300 MAX. ¥ .125 | 1.750 MAX. GND TAF .187 \bigcirc 2 460 .565 MAX. **₩** IN OUT 0 3 IN OUT TAP .170 0.760 MAX .125 .032 .250 .750 .100 .375 .020 .010 **.**062 ► .200 080 080 .062 .200 1.200 0 600 .300 Package Dimensions - 1509 Package Dimensions – 1509J ©2004 Data Delay Devices

PASSIVE DELAY LINE TEST SPECIFICATIONS


TEST CONDITIONS

INPUT:		OUTPUT:	
Ambient Temperature:	$25^{\circ}C \pm 3^{\circ}C$	R _{load} :	10MΩ
Input Pulse:	High = 3.0V typical	C _{load} :	10pf
	Low = 0.0V typical	Threshold:	50% (Rising & Falling)
Source Impedance:	50Ω Max.		
Rise/Fall Time:	3.0 ns Max. (measured		
	at 10% and 90% levels)		
Pulse Width $(T_D \le 75ns)$:			
(= ,	PER _{IN} = 1000ns		
Pulse Width (T _D > 75ns):			
Period (T _D > 75ns):	$PER_{IN} = 10 \times T_{D}$		

NOTE: The above conditions are for test only and do not in any way restrict the operation of the device.

Timing Diagram For Testing

Test Setup