SCES076E - JULY 1996 - REVISED DECEMBER 1998 - State-of-the-Art Advanced BiCMOS Technology (ABT) Widebus™ Design for 2.5-V and 3.3-V Operation and Low Static Power Dissipation - Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 2.3-V to 3.6-V V_{CC}) - Typical V_{OLP} (Output Ground Bounce) < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C - High Drive (-24/24 mA at 2.5-V and -32/64 mA at 3.3-V V_{CC}) - Power Off Disables Outputs, Permitting Live Insertion - High-Impedance State During Power Up and Power Down Prevents Driver Conflict - Uses Bus Hold on Data Inputs in Place of External Pullup/Pulldown Resistors to Prevent the Bus From Floating - Auto3-State Eliminates Bus Current Loading When Output Exceeds V_{CC} + 0.5 V - Latch-Up Performance Exceeds 250 mA Per JESD 17 - ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model; and Exceeds 1000 V Using Charged-Device Model, Robotic Method - Flow-Through Architecture Facilitates Printed Circuit Board Layout - Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise - Package Options Include Plastic Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), Thin Very Small-Outline (DGV) Packages, and 380-mil Fine-Pitch Ceramic Flat (WD) Package SN54ALVTH16827 . . . WD PACKAGE SN74ALVTH16827 . . . DGG, DGV, OR DL PACKAGE (TOP VIEW) | 1OE1 | | ` | | | |---|--------------------|-----|----|-------------------| | 1Y1 2 55 1A1 1Y2 3 54 1A2 GND 4 53 GND 1Y3 5 52 1A3 1Y4 6 51 1A4 VCC 7 50 VCC 1Y5 8 49 1A5 1Y6 9 48 1A6 1Y7 10 47 1A7 GND 11 46 GND 1Y8 12 45 1A8 1Y9 13 44 1A9 1Y10 14 43 1A10 2Y1 15 42 2A1 2Y2 16 41 2A2 2Y3 17 40 2A3 GND 18 39 GND 2Y4 19 38 2A4 2Y5 20 37 2A5 2Y6 21 36 2A6 VCC 22 35 VCC 2Y7 23 34 2A7 2Y8 24 33 2A8 GND 25 32 GND 2Y9 26 31 2A9 2Y10 27 30 2A10 | 4 054 5 | , U | | 14050 | | 1Y2 3 54 1A2 GND 4 53 GND 1Y3 5 52 1A3 1Y4 6 51 1A4 VCC 7 50 VCC 1Y5 8 49 1A5 1Y6 9 48 1A6 1Y7 10 47 1A7 GND 11 46 GND 1Y8 12 45 1A8 1Y9 13 44 1A9 1Y10 14 43 1A10 2Y1 15 42 2A1 2Y2 16 41 2A2 2Y3 17 40 2A3 GND 18 39 GND 2Y4 19 38 2A4 2Y5 20 37 2A5 2Y6 21 36 2A6 VCC 22 35 VCC 2Y7 23 34 2A7 2Y8 24 33 2A8 GND 25 32 GND 2Y9 26 31 2A9 2Y10 27 30 2A10 | | | | | | GND 4 53 GND 1Y3 5 52 1A3 1Y4 6 51 1A4 VCC 7 50 VCC 1Y5 8 49 1A5 1Y6 9 48 1A6 1Y7 10 47 1A7 GND 11 46 GND 1Y8 12 45 1A8 1Y9 13 44 1A9 1Y10 14 43 1A10 2Y1 15 42 2A1 2Y2 16 41 2A2 2Y3 17 40 2A3 GND 18 39 GND 2Y4 19 38 2A4 2Y5 20 37 2A5 2Y6 21 36 2A6 VCC 227 23 34 2A7 2Y8 24 33 2A8 GND 2Y9 26 31 2A9 2Y10 27 30 2A10 | | | | | | 1Y3 5 52 1A3 1Y4 6 51 1A4 VCC 7 50 VCC 1Y5 8 49 1A5 1Y6 9 48 1A6 1Y7 10 47 1A7 GND 11 46 GND 1Y8 12 45 1A8 1Y9 13 44 1A9 1Y10 14 43 1A10 2Y1 15 42 2A1 2Y2 16 41 2A2 2Y3 17 40 2A3 GND 18 39 GND 2Y4 19 38 2A4 2Y5 20 37 2A5 2Y6 21 36 2A6 VCC 22 35 VCC 2Y7 23 34 2A7 2Y8 24 33 2A8 GND 25 32 GND 2Y9 26 31 2A9 2Y10 27 30 2A10 | | 3 | | | | 1Y4 6 51 1A4 VCC 7 50 VCC 1Y5 8 49 1A5 1Y6 9 48 1A6 1Y7 10 47 1A7 GND 11 46 GND 1Y8 12 45 1A8 1Y9 13 44 1A9 1Y10 14 43 1A10 2Y1 15 42 2A1 2Y2 16 41 2A2 2Y3 17 40 2A3 GND 18 39 GND 2Y4 19 38 2A4 2Y5 20 37 2A5 2Y6 21 36 2A6 VCC 22 35 VCC 2Y7 23 34 2A7 2Y8 24 33 2A8 GND 25 32 GND 2Y9 26 31 2A9 2Y10 27 30 2A10 | _ | 4 | 53 | | | VCC | _ | 5 | 52 | _ | | 1Y5 8 49 1A5 1Y6 9 48 1A6 1Y7 10 47 1A7 GND 11 46 GND 1Y8 12 45 1A8 1Y9 13 44 1A9 1Y10 14 43 1A10 2Y1 15 42 2A1 2Y2 16 41 2A2 2Y3 17 40 2A3 GND 18 39 GND 2Y4 19 38 2A4 2Y5 20 37 2A5 2Y6 21 36 2A6 VCC 22 35 VCC 2Y7 23 34 2A7 2Y8 24 33 2A8 GND 25 32 GND 2Y9 26 31 2A9 2Y10 27 30 2A10 | 1Y4 | 6 | 51 | _ | | 1Y6 9 48 1 1A6 1Y7 10 47 1A7 GND 11 46 GND 1Y8 12 45 1A8 1Y9 13 44 1A9 1Y10 14 43 1A10 2Y1 15 42 2A1 2Y2 16 41 2A2 2Y3 17 40 2A3 GND 18 39 GND 2Y4 19 38 2A4 2Y5 20 37 2A5 2Y6 21 36 2A6 VCC 22 35 VCC 2Y7 23 34 2A7 2Y8 24 33 2A8 GND 25 32 GND 2Y9 26 31 2A9 2Y10 27 30 2A10 | V _{CC} [| 7 | |] v _{cc} | | 1Y7 | 1Y5[| 8 | 49 |] 1A5 | | GND 11 46 GND 1Y8 12 45 1A8 1Y9 13 44 1A9 1Y10 14 43 1A10 2Y1 15 42 2A1 2Y2 16 41 2A2 2Y3 17 40 2A3 GND 18 39 GND 2Y4 19 38 2A4 2Y5 20 37 2A5 2Y6 21 36 2A6 V _{CC} 22 35 V _{CC} 2Y7 23 34 2A7 2Y8 24 33 2A8 GND 25 32 GND 2Y9 26 31 2A9 2Y10 27 30 2A10 | 1Y6[| 9 | 48 |] 1A6 | | 1Y8 | 1Y7[| 10 | 47 |] 1A7 | | 1Y9 13 44 1A9 1Y10 14 43 1A10 2Y1 15 42 2A1 2Y2 16 41 2A2 2Y3 17 40 2A3 GND 18 39 GND 2Y4 19 38 2A4 2Y5 20 37 2A5 2Y6 21 36 2A6 VCC 22 35 VCC 2Y7 23 34 2A7 2Y8 24 33 2A8 GND 25 32 GND 2Y9 26 31 2A9 2Y10 27 30 2A10 | GND[| 11 | 46 | GND | | 1Y10 | 1Y8[| 12 | 45 | 1A8 | | 2Y1 | 1Y9[| 13 | 44 | 1A9 | | 2Y2 | 1Y10[| 14 | 43 |] 1A10 | | 2Y3 | 2Y1[| 15 | 42 |] 2A1 | | 2Y3 | 2Y2[| 16 | 41 | 2A2 | | 2Y4 | 2Y3[| 17 | 40 |] 2A3 | | 2Y5 20 37 2A5
2Y6 21 36 2A6
V _{CC} 22 35 V _{CC}
2Y7 23 34 2A7
2Y8 24 33 2A8
GND 25 32 GND
2Y9 26 31 2A9
2Y10 27 30 2A10 | GND[| 18 | 39 |] GND | | 2Y6 21 36 2A6
V _{CC} 22 35 V _{CC}
2Y7 23 34 2A7
2Y8 24 33 2A8
GND 25 32 GND
2Y9 26 31 2A9
2Y10 27 30 2A10 | 2Y4[| 19 | 38 |] 2A4 | | V _{CC} 22 35 V _{CC}
2Y7 23 34 2A7
2Y8 24 33 2A8
GND 25 32 GND
2Y9 26 31 2A9
2Y10 27 30 2A10 | 2Y5[| 20 | 37 |] 2A5 | | 2Y7 23 34 2A7
2Y8 24 33 2A8
GND 25 32 GND
2Y9 26 31 2A9
2Y10 27 30 2A10 | 2Y6[| 21 | 36 |] 2A6 | | 2Y7 23 34 2A7
2Y8 24 33 2A8
GND 25 32 GND
2Y9 26 31 2A9
2Y10 27 30 2A10 | V _{CC} [| 22 | 35 |] v _{cc} | | GND 25 32 GND 2Y9 26 31 2A9 2Y10 27 30 2A10 | 2Y7[| 23 | 34 | 2A7 | | 2Y9 26 31 2A9
2Y10 27 30 2A10 | 2Y8[| 24 | 33 | 2A8 | | 2Y10 27 30 2A10 | GND[| 25 | 32 | GND | | | 2Y9[| 26 | 31 |] 2A9 | | 2OE1 28 29 2OE2 | 2Y10[| 27 | | | | | 20E1 | 28 | 29 | 20E2 | #### description The 'ALVTH16827 devices are 20-bit buffers/line drivers designed for 2.5-V or 3.3-V V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment. The devices are composed of two 10-bit sections with separate output-enable signals. For either 10-bit buffer section, the two output-enable (1OE1 and 1OE2, or 2OE1 and 2OE2) inputs must be low for the corresponding Y outputs to be active. If either output-enable input is high, the outputs of that 10-bit buffer section are in the high-impedance state. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Widebus is a trademark of Texas Instruments Incorporated. SCES076E - JULY 1996 - REVISED DECEMBER 1998 #### description (continued) When V_{CC} is between 0 and 1.2 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.2 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level. The SN54ALVTH16827 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74ALVTH16827 is characterized for operation from –40°C to 85°C. # FUNCTION TABLE (each 10-bit section) | | INPUTS | | | | | | | | |-----|--------|---|---|--|--|--|--|--| | OE1 | OE2 | Α | Y | | | | | | | L | L | L | L | | | | | | | L | L | Н | н | | | | | | | Н | X | Χ | Z | | | | | | | Х | Н | Χ | Z | | | | | | #### logic diagram (positive logic) # absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | Supply voltage range, V _{CC} | 0.5 V to 4.6 V | |--|----------------| | Input voltage range, V _I (see Note 1) | 0.5 V to 7 V | | Voltage range applied to any output in the high-impedance | | | or power-off state, V _O (see Note 1) | 0.5 V to 7 V | | Voltage range applied to any output in the high state, V _O (see Note 1) | 0.5 V to 7 V | | Output current in the low state, IO: SN54ALVTH16827 | 96 mA | | SN74ALVTH16827 | | | Output current in the high state, IO: SN54ALVTH16827 | –48 mA | | SN74ALVTH16827 | | | Input clamp current, I _{IK} (V _I < 0) | –50 mA | | Output clamp current, I _{OK} (V _O < 0) | –50 mA | | Package thermal impedance, θ _{JA} (see Note 2): DGG package | 81°C/W | | DGV package | | | DL package | | | Storage temperature range, T _{Stg} | | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. ^{2.} The package thermal impedance is calculated in accordance with JESD 51. NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. SCES076E - JULY 1996 - REVISED DECEMBER 1998 # recommended operating conditions, $V_{\mbox{\footnotesize{CC}}}$ = 2.5 V \pm 0.2 V (see Note 3) | | | | SN54 | ALVTH1 | 6827 | SN74 | ALVTH1 | 6827 | UNIT | |---------------------|--|-----------------|------|--------|------|------|--------|------|------| | | | | MIN | TYP | MAX | MIN | TYP | MAX | UNII | | VCC | Supply voltage | pply voltage | | | | 2.3 | | 2.7 | V | | VIH | High-level input voltage | | 1.7 | | | 1.7 | | | V | | V _{IL} | Low-level input voltage | | | 4 | 0.7 | | | 0.7 | V | | VI | Input voltage | 0 | Vcc | 5.5 | 0 | Vcc | 5.5 | V | | | ЮН | High-level output current | | | ,Q | -6 | | | -8 | mA | | la. | Low-level output current | | | Ó | 6 | | | 8 | mA | | lor | Low-level output current; current duty cycle ≤ | 50%; f≥1 kHz | 5 | 3 | 18 | | | 24 | IIIA | | Δt/Δν | Input transition rise or fall rate | Outputs enabled | 20 | | 10 | | | 10 | ns/V | | Δt/ΔV _{CC} | Power-up ramp rate | | 200 | | | 200 | | | μs/V | | TA | Operating free-air temperature | -55 | | 125 | -40 | | 85 | °C | | NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. ### recommended operating conditions, V_{CC} = 3.3 V \pm 0.3 V (see Note 3) | | | | SN54 | ALVTH1 | 6827 | SN74/ | ALVTH1 | 6827 | UNIT | |---------------------|--|-----------------|------|--------|------|-------|--------|------|------| | | | | MIN | TYP | MAX | MIN | TYP | MAX | UNIT | | VCC | Supply voltage | oply voltage | | | | 3 | | 3.6 | V | | VIH | High-level input voltage | 2 | | | 2 | | | V | | | V _{IL} | Low-level input voltage | | 4 | 0.8 | | | 0.8 | V | | | VI | Input voltage | 0 | VCC | 5.5 | 0 | VCC | 5.5 | V | | | loн | High-level output current | | Q | -24 | | | -32 | mA | | | lai | Low-level output current | | | Ó | 24 | | | 32 | mA | | lor | Low-level output current; current duty cycle ≤ | 50%; f≥1 kHz | 4 | 2 | 48 | | | 64 | IIIA | | Δt/Δν | Input transition rise or fall rate | Outputs enabled | 20 | , | 10 | | | 10 | ns/V | | Δt/ΔV _{CC} | Power-up ramp rate | | 200 | | | 200 | | | μs/V | | TA | Operating free-air temperature | -55 | | 125 | -40 | | 85 | °C | | NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. SCES076E - JULY 1996 - REVISED DECEMBER 1998 # electrical characteristics over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) | DA | DAMETER | TEST OF | ANDITIONS | SN54 | ALVTH1 | 6827 | SN74 | ALVTH1 | 6827 | UNIT | |--------------------|--------------------|--|--|--------------------|--------|------------|--------------------|--------|------------|------| | L PA | RAMETER | 1651 00 | NDITIONS | MIN | TYP† | MAX | MIN | TYP† | MAX | UNII | | VIK | | $V_{CC} = 2.3 \text{ V},$ | I _I = -18 mA | | | -1.2 | | | -1.2 | V | | | | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V},$ | I _{OH} = -100 μA | V _{CC} -0 | .2 | | V _{CC} -0 | .2 | | | | Vон | | V _{CC} = 2.3 V | I _{OH} = -6 mA | 1.8 | | | | | | V | | | | VCC = 2.3 V | I _{OH} = -8 mA | | | | 1.8 | | | | | | | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V},$ | I _{OL} = 100 μA | | | 0.2 | | | 0.2 | | | | | | $I_{OL} = 6 \text{ mA}$ | | | 0.4 | | | 0.47 | | | VOL | | V _{CC} = 2.3 V | $I_{OL} = 8 \text{ mA}$ | | | | | | 0.4 | V | | | | VCC = 2.5 V | I _{OL} = 18 mA | | | 0.5 | | | | | | | | | I _{OL} = 24 mA | | | | | | 0.5 | | | | Control inputs | $V_{CC} = 2.7 \text{ V},$ | $V_I = V_{CC}$ or GND | | | ±1 | | | ±1 | | | | Control inputs | $V_{CC} = 0 \text{ or } 2.7 \text{ V},$ | V _I = 5.5 V | | | 10 | | | 10 | | | Ц | | | V _I = 5.5 V | | | 10 | | | 10 | μΑ | | | Data inputs | V _{CC} = 2.7 V | $V_I = V_{CC}$ | | Š | 1 | | | 1 | | | | | | V _I = 0 | | 27 | - 5 | | | - 5 | | | l _{off} | | $V_{CC} = 0$, | V_I or $V_O = 0$ to 4.5 V | | 5 | | | | ±100 | μΑ | | I _{BHL} ‡ | | $V_{CC} = 2.3 \text{ V},$ | V _I = 0.7 V | | 115 | | | 115 | | μΑ | | I _{BHH} § | | $V_{CC} = 2.3 \text{ V},$ | V _I = 1.7 V | 0 | -10 | | | -10 | | μΑ | | IBHLO | Т | $V_{CC} = 2.7 \text{ V},$ | $V_I = 0$ to V_{CC} | 300 | | | 300 | | | μΑ | | Івнно ^і | # | $V_{CC} = 2.7 \text{ V},$ | $V_I = 0$ to V_{CC} | -300 | | | -300 | | | μΑ | | I _{EX} | | $V_{CC} = 2.3 \text{ V},$ | V _O = 5.5 V | | | 125 | | | 125 | μΑ | | I _{OZ(PU} | //PD) [☆] | $V_{CC} \le 1.2 \text{ V}, V_{O} = \underline{0.5} \text{ V}$
$V_{I} = \text{GND or } V_{CC}, \overline{\text{OE}} =$ | to V _{CC} ,
don't care | | | ±100 | | | ±100 | μΑ | | lozh | | V _{CC} = 2.7 V | V _O = 2.3 V,
V _I = 0.7 V or 1.7 V | | | 5 | | | 5 | μА | | lozL | | V _{CC} = 2.7 V | V _O = 0.5 V,
V _I = 0.7 V or 1.7 V | | | - 5 | | | -5 | μА | | | | V _{CC} = 2.7 V, | Outputs high | | 0.04 | 0.1 | | 0.04 | 0.1 | | | Icc | | $I_{O} = 0$, | Outputs low | | 2.3 | 5 | | 2.3 | 5 | mA | | | | $V_I = V_{CC}$ or GND | Outputs disabled | | 0.04 | 0.1 | | 0.04 | 0.1 | | | Ci | | V _{CC} = 2.5 V, | V _I = 2.5 V or 0 | | 3 | | | 3 | | pF | | Co | | $V_{CC} = 2.5 \text{ V},$ | V _O = 2.5 V or 0 | | 6 | | | 6 | | pF | | † All turnin | -1 | CC = 2.5 V T _A = 25°C | | • | | | | - | | | [†] All typical values are at $V_{CC} = 2.5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. [‡] The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max. [§] The bus-hold circuit can source at least the minimum high sustaining current at V_{IH} min. I_{BHH} should be measured after raising V_{IN} to V_{CC} and then lowering it to V_{IH} min. $[\]P$ An external driver must source at least IBHLO to switch this node from low to high. [#] An external driver must sink at least I_{BHHO} to switch this node from high to low. $[\]parallel$ Current into an output in the high state when $\vee_{O} > \vee_{CC}$ [★]High-impedance state during power up or power down SCES076E - JULY 1996 - REVISED DECEMBER 1998 # electrical characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) | D | DAMETED | TEST | CONDITIONS | SN54 | ALVTH1 | 6827 | SN74 | ALVTH1 | 6827 | UNIT | |---|--------------------|--|--|--------------------|--------|------------|--------|--------|------------|------| | | ANAMIETEN | TEST | CONDITIONS | MIN | TYP† | MAX | MIN | TYP† | MAX | ONIT | | ٧ _{IK} | | $V_{CC} = 3 V$, | $I_{ } = -18 \text{ mA}$ | | | -1.2 | | | -1.2 | V | | | | V _{CC} = 3 V to 3.6 V, | I _{OH} = -100 μA | V _{CC} -0 | .2 | | VCC-0. | .2 | | | | Vон | | V 2.V | I _{OH} = -24 mA | 2 | | | | | | V | | VOL Control inputs Ioff IBHL IBHH IBHHO IGK ICK ICK ICK ICK ICK ICK ICK ICK ICK IC | VCC = 3 V | $I_{OH} = -32 \text{ mA}$ | | | | 2 | | | | | | | | $V_{CC} = 3 \text{ V to } 3.6 \text{ V},$ | I _{OL} = 100 μA | | | 0.2 | | | 0.2 | | | | | | I _{OL} = 16 mA | | | | | | 0.4 | | | \/-· | | | I _{OL} = 24 mA | | | 0.5 | | | | V | | VOL | | VCC = 3 V | I _{OL} = 32 mA | | | | | | 0.5 | V | | | | | I _{OL} = 48 mA | | | 0.55 | | | | | | | | | I _{OL} = 64 mA | | | | | | 0.55 | | | | Control innuts | V _{CC} = 3.6 V, | V _I = V _{CC} or GND | | | ±1 | | | ±1 | | | | Control inputs | V _{CC} = 0 or 3.6 V, | V _I = 5.5 V | | | 10 | | | 10 | | | II | | | V _I = 5.5 V | | | 10 | | | 10 | μΑ | | | Data inputs | V _{CC} = 3.6 V | $V_I = V_{CC}$ | | Ž | 1 | | | 1 | | | | | | V _I = 0 | | Q. | - 5 | | | - 5 | | | l _{off} | | $V_{CC} = 0$, | V_{I} or $V_{O} = 0$ to 4.5 V | | 6 | | | | ±100 | μΑ | | I _{BHL} ‡ | | V _{CC} = 3 V, | V _I = 0.8 V | 75 | 20 | | 75 | | | μΑ | | IBHH§ | | V _{CC} = 3 V, | V _I = 2 V | -75 | | | -75 | | | μΑ | | | | V _{CC} = 3.6 V, | $V_I = 0$ to V_{CC} | 500 | | | 500 | | | μΑ | | | | V _{CC} = 3.6 V, | $V_I = 0$ to V_{CC} | -500 | | | -500 | | | μΑ | | IEX | | V _{CC} = 3 V, | V _O = 5.5 V | | | 125 | | | 125 | μΑ | | I _{OZ(PI} | J/PD) [☆] | $V_{CC} \le 1.2 \text{ V}, V_{O} = \underline{0.5}$
V _I = GND or V _{CC} , \overline{OE} | V to V _{CC} ,
= don't care | | | ±100 | | | ±100 | μА | | lozh | | V _{CC} = 3.6 V | $V_O = 3 \text{ V},$
$V_I = 0.8 \text{ V or 2 V}$ | | | 5 | | | 5 | μΑ | | lozL | | V _{CC} = 3.6 V | $V_O = 0.5 \text{ V},$
$V_I = 0.8 \text{ V or 2 V}$ | | | - 5 | | | - 5 | μΑ | | | | V _{CC} = 3.6 V, | Outputs high | | 0.07 | 0.1 | | 0.07 | 0.1 | | | ICC | $I_{O} = 0$ | | Outputs low | | 3.2 | 6 | | 3.2 | 6 | mA | | | | $V_I = V_{CC}$ or GND | Outputs disabled | | 0.07 | 0.1 | | 0.07 | 0.1 | | | ΔI_{CC} $V_{CC} = 3 \text{ V to } 3.6 \text{ V, One i}$ Other inputs at V_{CC} or G | | | | | 0.4 | | | 0.4 | mA | | | Ci | | V _{CC} = 3.3 V, | $V_{I} = 3.3 \text{ V or } 0$ | | 3 | | | 3 | | pF | | Со | | $V_{CC} = 3.3 \text{ V},$ | V _O = 3.3 V or 0 | | 6 | | | 6 | | pF | [†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. [‡] The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max. [§] The bus-hold circuit can source at least the minimum high sustaining current at VIH min. IBHH should be measured after raising VIN to VCC and then lowering it to VIH min. $[\]P$ An external driver must source at least IBHLO to switch this node from low to high. [#]An external driver must sink at least I_{BHHO} to switch this node from high to low. Current into an output in the high state when VO > VCC [★]High-impedance state during power up or power down [□]This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND. SCES076E - JULY 1996 - REVISED DECEMBER 1998 # switching characteristics over recommended operating free-air temperature range, C_L = 30 pF, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1) | PARAMETER | FROM | то | SN54ALVTI | H16827 | SN74ALVT | UNIT | | |------------------|---------|----------|-----------|--------|----------|------|------| | PARAMETER | (INPUT) | (OUTPUT) | MIN | MAX | MIN | MAX | UNIT | | t _{PLH} | А | | 1.5 | 3.2 | 1.5 | 3.2 | ns | | ^t PHL | A | ' | 1.7 | 3.7 | 1.7 | 3.7 | 115 | | ^t PZH | ŌĒ | V | 1.9 | 4.3 | 1.9 | 4.3 | ns | | ^t PZL | OE . | ı | 1.8 | 4 | 1.8 | 4 | 115 | | ^t PHZ | OE | V | 2.5 | 5.6 | 2.5 | 5.6 | ns | | t _{PLZ} | OE OE | , | 0 1.7 | 4.6 | 1.7 | 4.6 | 113 | # switching characteristics over recommended operating free-air temperature range, C_L = 50 pF, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2) | PARAMETER | FROM | то | SN54ALVT | H16827 | SN74ALVT | UNIT | | |------------------|---------|----------|----------|--------|----------|------|------| | PARAMETER | (INPUT) | (OUTPUT) | MIN | MAX | MIN | MAX | UNIT | | ^t PLH | А | | 1.8 | 3 | 1.8 | 3 | ns | | t _{PHL} | A | 1 | 1.6 | 2.8 | 1.6 | 2.8 | 115 | | ^t PZH | ŌĒ | | 1.6 | 3.9 | 1.6 | 3.9 | ns | | t _{PZL} | OE | 1 | 1.5 | 3.4 | 1.5 | 3.4 | 115 | | ^t PHZ | ŌĒ | V | 3,3 | 5.8 | 3.3 | 5.8 | ns | | t _{PLZ} | OE | ' | 2.6 | 4.6 | 2.6 | 4.6 | 113 | SCES076E - JULY 1996 - REVISED DECEMBER 1998 # PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$ NOTES: A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \Omega$, $t_f \leq 2$ ns, $t_f \leq 2$ ns. - D. The outputs are measured one at a time with one transition per measurement. Figure 1. Load Circuit and Voltage Waveforms SCES076E - JULY 1996 - REVISED DECEMBER 1998 # PARAMETER MEASUREMENT INFORMATION V_{CC} = 3.3 V \pm 0.3 V NOTES: A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform22 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 2.5 ns. $t_f \leq$ 2.5 ns. - D. The outputs are measured one at a time with one transition per measurement. Figure 2. Load Circuit and Voltage Waveforms #### PACKAGE OPTION ADDENDUM 24-May-2007 #### **PACKAGING INFORMATION** | Orderable Device | Status ⁽¹⁾ | Package
Type | Package
Drawing | Pins | Package
Qty | e Eco Plan ⁽²⁾ | Lead/Ball Finish | MSL Peak Temp ⁽³⁾ | |-------------------|-----------------------|-----------------|--------------------|------|----------------|---------------------------|------------------|------------------------------| | 74ALVTH16827DLG4 | ACTIVE | SSOP | DL | 56 | 20 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | 74ALVTH16827DLRG4 | ACTIVE | SSOP | DL | 56 | 1000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | 74ALVTH16827GRE4 | ACTIVE | TSSOP | DGG | 56 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | 74ALVTH16827VRE4 | ACTIVE | TVSOP | DGV | 56 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | 74ALVTH16827VRG4 | ACTIVE | TVSOP | DGV | 56 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74ALVTH16827DL | ACTIVE | SSOP | DL | 56 | 20 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74ALVTH16827DLR | ACTIVE | SSOP | DL | 56 | 1000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74ALVTH16827GR | ACTIVE | TSSOP | DGG | 56 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74ALVTH16827VR | ACTIVE | TVSOP | DGV | 56 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | ⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. **TBD:** The Pb-Free/Green conversion plan has not been defined. **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Carrier tape design is defined largely by the component lentgh, width, and thickness. | Ao = | Dimension | designed | to | accommodate | the | component | width. | |------|--------------|-----------|------|-----------------|-----|-----------|------------| | Bo = | Dimension | designed | to | accommodate | the | component | length. | | | | | | accommodate | the | component | thickness. | | W = | Overall widt | h of the | car | rier tape. | | | | | P = | Pitch betwe | en succes | ssiv | e cavity center | ·S. | | | #### TAPE AND REEL INFORMATION # **PACKAGE MATERIALS INFORMATION** 27-Apr-2007 | Device | Package | Pins | Site | Reel
Diameter
(mm) | Reel
Width
(mm) | A0 (mm) | B0 (mm) | K0 (mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |-------------------|---------|------|------|--------------------------|-----------------------|---------|---------|---------|------------|-----------|------------------| | SN74ALVTH16827DLR | DL | 56 | MLA | 330 | 32 | 11.35 | 18.67 | 3.1 | 16 | 32 | Q1 | | SN74ALVTH16827GR | DGG | 56 | MLA | 330 | 24 | 8.6 | 15.8 | 1.8 | 12 | 24 | Q1 | | SN74ALVTH16827VR | DGV | 56 | MLA | 330 | 24 | 6.8 | 10.1 | 1.6 | 12 | 24 | Q1 | ### TAPE AND REEL BOX INFORMATION | Device | Package | Pins | Site | Length (mm) | Width (mm) | Height (mm) | |-------------------|---------|------|------|-------------|------------|-------------| | SN74ALVTH16827DLR | DL | 56 | MLA | 336.6 | 342.9 | 41.3 | | SN74ALVTH16827GR | DGG | 56 | MLA | 333.2 | 333.2 | 31.75 | | SN74ALVTH16827VR | DGV | 56 | MLA | 333.2 | 333.2 | 31.75 | # PACKAGE MATERIALS INFORMATION 27-Apr-2007 #### DGV (R-PDSO-G**) #### **24 PINS SHOWN** #### **PLASTIC SMALL-OUTLINE** NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side. - D. Falls within JEDEC: 24/48 Pins MO-153 14/16/20/56 Pins – MO-194 #### DL (R-PDSO-G**) #### **48 PINS SHOWN** #### PLASTIC SMALL-OUTLINE PACKAGE NOTES: A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). - D. Falls within JEDEC MO-118 ### DGG (R-PDSO-G**) #### #### PLASTIC SMALL-OUTLINE PACKAGE NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold protrusion not to exceed 0,15. - D. Falls within JEDEC MO-153 #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | | Applications | | | |------------------------|---|--|--| | amplifier.ti.com | Audio | www.ti.com/audio | | | dataconverter.ti.com | Automotive | www.ti.com/automotive | | | dsp.ti.com | Broadband | www.ti.com/broadband | | | interface.ti.com | Digital Control | www.ti.com/digitalcontrol | | | logic.ti.com | Military | www.ti.com/military | | | power.ti.com | Optical Networking | www.ti.com/opticalnetwork | | | microcontroller.ti.com | Security | www.ti.com/security | | | www.ti-rfid.com | Telephony | www.ti.com/telephony | | | www.ti.com/lpw | Video & Imaging | www.ti.com/video | | | | Wireless | www.ti.com/wireless | | | | dataconverter.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti-rfid.com | amplifier.ti.com dataconverter.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti-rfid.com www.ti-com/lpw Audio Automotive Broadband Digital Control Military Optical Networking Security Telephony Video & Imaging | |