Darlington Transistors

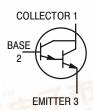
NPN Silicon

Features

• Pb-Free Packages are Available*

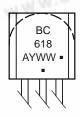
Rating	Symbol	Value	Unit
Collector – Emitter Voltage	V_{CEO}	55	Vdc
Collector - Base Voltage	V _{CBO}	80	Vdc
Emitter-Base Voltage	V _{EBO}	12	Vdc
Collector Current – Continuous	I _C	1.0	Adc
Total Power Dissipation @ T _A = 25°C Derate above T _A = 25°C	P _D	625 5.0	mW/°C
Total Power Dissipation @ T _A = 25°C Derate above T _A = 25°C	P _D	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	83.3	°C/W

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

ON Semiconductor®


http://onsemi.com

TO-92 CASE 29 STYLE 17

MARKING DIAGRAM

A = Assembly Location

′ = Year

WW = Work Week

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

ONDERNING IN CHAINATION					
Device	Package	Shipping [†]			
BC618	TO-92	5000 Units / Bulk			
BC618G	TO-92 (Pb-Free)	5000 Units / Bulk			
BC618RL1	TO-92	2000 / Tape & Reel			
BC618RL1G	TO-92 (Pb-Free)	2000 / Tape & Reel			

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		•			
Collector – Emitter Breakdown Voltage (I _C = 10 mAdc, V _{BE} = 0)	V _{(BR)CEO}	55	-	_	Vdc
Collector – Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	V _{(BR)CBO}	80	-	_	Vdc
Emitter – Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V _{(BR)EBO}	12	_	_	Vdc
Collector Cutoff Current (V _{CE} = 60 Vdc, V _{BE} = 0)	I _{CES}	_	_	50	nAdc
Collector Cutoff Current (V _{CB} = 60 Vdc, I _E = 0)	I _{CBO}	_	_	50	nAdc
Emitter Cutoff Current (V _{EB} = 10 Vdc, I _C = 0)	I _{EBO}	_	_	50	nAdc
ON CHARACTERISTICS	<u>.</u>				
DC Current Gain (I _C = 200 mA, I _B = 0.2 mA)	V _{CE(sat)}	_	_	1.1	Vdc
Base – Emitter Saturation Voltage (I _C = 200 mA, I _B = 0.2 mA)	V _{BE(sat)}	_	_	1.6	Vdc
DC Current Gain $ \begin{array}{l} (I_C = 100 \; \mu \text{A, V}_{CE} = 5.0 \; \text{Vdc}) \\ (I_C = 10 \; \text{mA, V}_{CE} = 5.0 \; \text{Vdc}) \\ (I_C = 200 \; \text{mA, V}_{CE} = 5.0 \; \text{Vdc}) \\ (I_C = 1.0 \; \text{A, V}_{CE} = 5.0 \; \text{Vdc}) \end{array} $	h _{FE}	2000 4000 10000 4000	- - - -	- - 50000 -	-
DYNAMIC CHARACTERISTICS					
Current–Gain – Bandwidth Product (I _C = 500 mA, V _{CE} = 5.0 Vdc, P = 100 MHz)	f _T	150	-	_	MHz
Output Capacitance (V _{CB} = 10 V, I _E = 0, f = 1.0 MHz)	C _{ob}	_	4.5	7.0	pF
Input Capacitance (V _{EB} = 5.0 V, I _E = 0, f = 1.0 MHz)	C _{ib}	_	5.0	9.0	pF

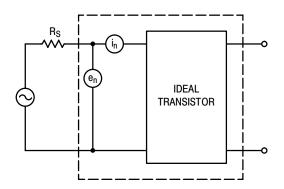


Figure 1. Transistor Noise Model

NOISE CHARACTERISTICS

 $(V_{CE} = 5.0 \text{ Vdc}, T_A = 25^{\circ}C)$

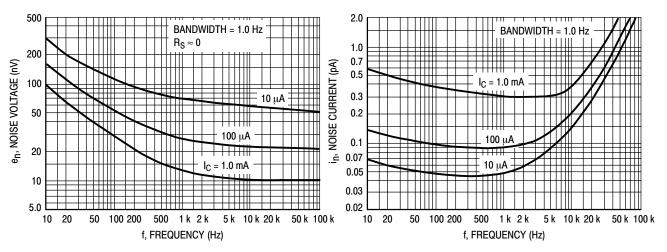


Figure 2. Noise Voltage

Figure 3. Noise Current

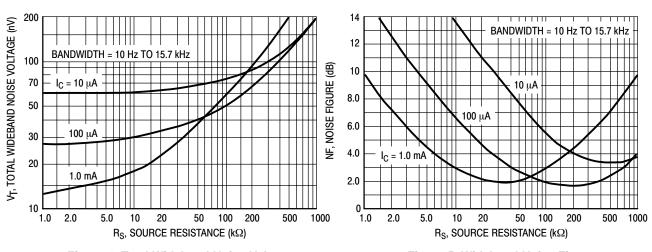
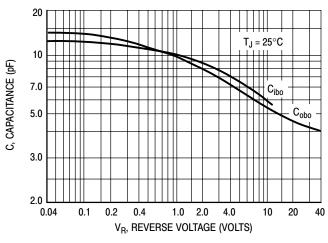



Figure 4. Total Wideband Noise Voltage

Figure 5. Wideband Noise Figure

SMALL-SIGNAL CHARACTERISTICS

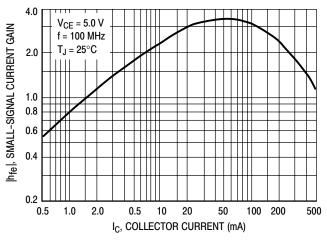
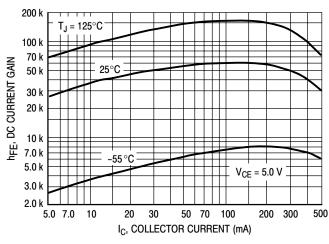



Figure 6. Capacitance

Figure 7. High Frequency Current Gain

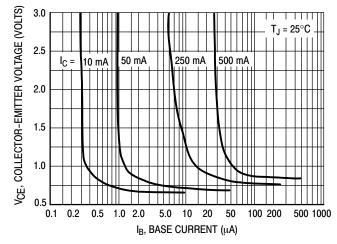
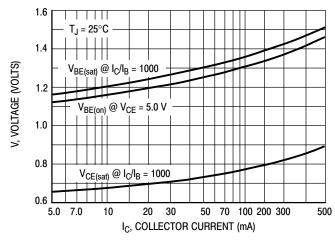
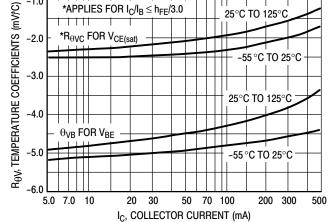




Figure 8. DC Current Gain

Figure 9. Collector Saturation Region

25°C TO 125°C

*APPLIES FOR $I_C/I_B \le h_{FE}/3.0$

* $R_{\theta VC}$ FOR $V_{CE(sat)}$

-2.0

Figure 10. "On" Voltages

Figure 11. Temperature Coefficients

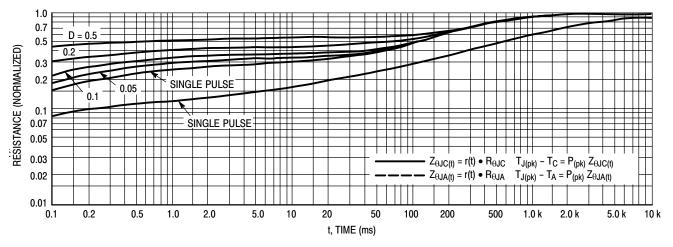
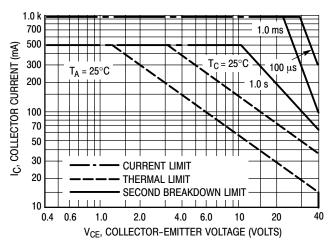
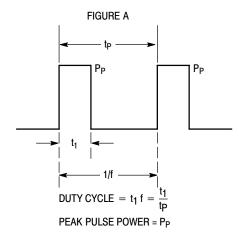
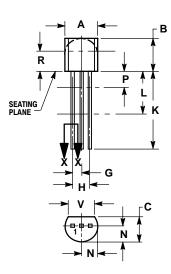


Figure 12. Thermal Response


Figure 13. Active Region Safe Operating Area

Design Note: Use of Transient Thermal Resistance Data

PACKAGE DIMENSIONS

TO-92 (TO-226) CASE 29-11 ISSUE AL

- DIMENSIONING AND TOLERANCING PER ANSI
- CONTROLLING DIMENSION: INCH.
 CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. LEAD DIMENSION IS UNCONTROLLED IN P AND
- BEYOND DIMENSION K MINIMUM.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.45	5.20
В	0.170	0.210	4.32	5.33
С	0.125	0.165	3.18	4.19
D	0.016	0.021	0.407	0.533
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
Р		0.100		2.54
R	0.115		2.93	
v	0.135		3 //3	

STYLE 17:

PIN 1. COLLECTOR

2 BASE

EMITTER

ON Semiconductor and una are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULLFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA **Phone**: 480–829–7710 or 800–344–3860 Toll Free USA/Canada **Fax**: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.