TXE-315-KH2 TXE-418-KH2 # TXE-433-KH2 样 encoder. When paired with a matching KH2 打Series receiver / decoder module, a reliable By wireless link is formed, capable of transferring Puthe status of 8 parallel inputs over distances of up to 3,000 feet. Ten tri-state address lines 版 KH2 SERIES TRANSMITTER / ENCODER DATA GUIDE 出 DESCRIPTION In DESCRIPTION In OEM applications such as remote control and in OEM applications such as remote control and command, and keyless entry. Housed in a provide 59,049 (310) addresses for security and 捷 required (except an optimized RF transmitter with an on-board uniqueness. No external RF components are compact SMD package, it combines a highlyintegration straightforward. antenna), making Figure 1: Package Dimensions ### **FEATURES** - Low cost - On-board encoder Compact SMD package Ultra-low power consumption Adjustable output power Stable SAW-based architecture - 8 parallel binary inputs - 310 addresses for security and uniqueness - No external RF components required No production tuning Transmit enable line ## APPLICATIONS INCLUDE Remote Control / Command Keyless Entry 查询EVAL-315-KH2供应商 - Garage / Gate Openers Lighting Control - Call Systems - Home / Industrial Automation - Fire / Security Alarms - Wire Elimination Remote Status Monitoring | ORDERIN | ORDERING INFORMATION | |-------------------------------------|----------------------| | PART # | DESCRIPTION | | TXE-315-KH2 | Transmitter 315MHz | | TXE-418-KH2 | Transmitter 418MHz | | TXE-433-KH2 | Transmitter 433MHz | | RXD-315-KH2 | Receiver 315MHz | | RXD-418-KH2 | Receiver 418MHz | | RXD-433-KH2 | Receiver 433MHz | | EVAL-***-KH2 | Basic Evaluation Kit | | *** _ 01E /10 /Ctondord) /00 00//U- | ADD COMES | | OKUEKIN | ORDERING INFORMATION | |---------------------------------------|---| | PART # | DESCRIPTION | | TXE-315-KH2 | Transmitter 315MHz | | TXE-418-KH2 | Transmitter 418MHz | | TXE-433-KH2 | Transmitter 433MHz | | RXD-315-KH2 | Receiver 315MHz | | RXD-418-KH2 | Receiver 418MHz | | RXD-433-KH2 | Receiver 433MHz | | EVAL-***-KH2 | Basic Evaluation Kit | | *** = 315, 418 (Standard), 433.92MHz. | ndard), 433.92MHz. | | ⊺ransmitters are su | Transmitters are supplied in tubes of 20 pcs. | | | | # **ELECTRICAL SPECIFICATIONS** | raiailielei | Designation | IVIIII. | Турісаі | Max. | OIIIIO | Salon | |-----------------------------|------------------|-------------------------|------------|-------------------------|--------|-------| | POWER SUPPLY | | | | | | | | Operating Voltage | v_{cc} | 2.7 | I | 5.2 | VDC | I | | Supply Current | .
⊗ | ı | 1.5 | ı | mA | 1,4 | | Power-Down Current | I _{PDN} | I | 1.0 | I | μA | I | | TRANSMITTER SECTION | | | | | | | | Transmit Frequency Range: | F _C | | | | | | | TXE-315-KH2 | | I | 315 | ı | MHz | I | | TXE-418-KH2 | | ı | 418 | ı | MHz | I | | TXE-433-KH2 | | I | 433.92 | I | MHz | I | | Center Frequency Accuracy | ı | -75 | ı | +75 | КНz | ı | | Output Power | P _o | -4 | +2 | 4 | dBm | 2,3 | | Harmonic Emissions: | ₽ | | | | | | | TXE-315-KH2 | | -40 | ı | ı | dBc | ı | | TXE-418-KH2 | | -40 | ı | ı | dBc | ı | | TXE-433-KH2 | | -45 | ı | ı | dBc | ı | | ANTENNA PORT | | | | | | | | RF Output Impedance | R_{OUT} | ı | 50 | ı | Ω | 4 | | ENCODER SECTION | | | | | | | | Data Length | ı | ı | 26 bits 3x | ı | ı | ı | | Average Data Duty Cycle | ı | ı | 50% | ı | ı | 4 | | Encoder Oscillator | FENC | I | 70 | ı | КНZ | 4 | | Data Input: | | | | | | | | Logic Low | I | 0.0 | ı | $0.2 \times V_{\rm CC}$ | VDC | 4 | | Logic High | | $V_{\rm CC} \times 0.8$ | ı | V _{CC} | VDC | 4 | | Input Sink Current | I | 0.6 | 1.0 | 1.2 | mA | 4 | | ENVIRONMENTAL | | | | | | | | Operating Temperature Range | I | -30 | I | +70 | ဂိ | 4 | Table 1: KH2 Series Transmitter Electrical Specifications ### Notes - Current draw with 50% mark / space ratio. - Into a 50Ω load. With 430Ω resistor on LADJ. Characterized, but not tested. ### *CAUTION* This product incorporates numerous static-sensitive components. Always wear an ESD wrist strap and observe proper ESD handling procedures when working with this device. Failure to observe this precaution may result in module damage or failure. # **ABSOLUTE MAXIMUM RATINGS** | | seconds | +225°C for 10 seconds | +2; | Soldering Temperature | |-----|----------|-----------------------|------|--------------------------------| | റ് | +85 | ť | -45 | Storage Temperature | | റ് | +70 | ť | -30 | Operating Temperature | | VDC | \ | ť | -0.3 | Any Input or Output Pin | | VDC | +6.0 | ť | -0.3 | Supply Voltage V _{CC} | *NOTE* Exceeding any of the limits of this section may lead to permanent damage to the device. Furthermore, extended operation at these maximum ratings may reduce the life of this device. ## PERFORMANCE DATA ground plane. ground pins be connected to the operation. It is recommended all illustrates otherwise 25°C from a 3.0VDC supply unless These performance parameters are based on module operation at necessary noted. fοŗ the testing connections Figure and Figure 2: Test / Basic Application Circuit # TYPICAL PERFORMANCE GRAPHS Figure 3: Supply Current vs. Supply Voltage Figure 4: Output Power vs. Supply Voltage Figure 5: Output Power vs. LADJ Resistor ### PIN ASSIGNMENTS | 13 | AO | 12 D 7 | |------|----------|---------------| | 区14 | <u>≥</u> | 11 월 D6 | | | A2 | М | | | A3 | М | | | Α4 | | | | A5 13 | 7 월 D2 | | 区 19 | A6 | 6 <u>5</u> TE | | | A7 | 5 ∑ VCC | | | A8 | 4 Z GND | | ☐ 22 | A9 | 3 <u>1</u> D1 | | Ы | GND | 2 월 00 | | | ANT | 1 ∑LADJ/GND | | | | | Figure 6: KH2 Series Transmitter Pinout (Top View) ### PIN DESCRIPTIONS | Pin # | Name
GND / LADJ
D0 - D1 | |---------------|---| | 2, 3,
7-12 | D0 - D1 | | 4 | GND | | 5 | V _{CC} | | თ | Transmit Enable Line. When this line goes high, the TE module will encode the states of the address and data lines into a packet and transmit the packet three times. | | 13-22 | A0-A9 | | 23 | GND | | 24 | ANT | ## MODULE DESCRIPTION The KH2 Series transmitter / encoder module combines a high-performan Surface Acoustic Wave (SAW) based transmitter with an on-board encod When combined with a Linx KH2 Series receiver / decoder, a highly reliable I link capable of transferring control or command data over line-of-sight distanc of up to 3,000 feet is formed. The module accepts up to 8 parallel inputs, su as switches or contact closures, and provides ten tri-state address lines security and creation of 59,049 (310) unique transmitter / receiver relationship. The KH's compact surface-mount package integrates easily into existing design and is friendly to hand production or automated assembly. Figure 7: KH2 Series Transmitter Block Diagram ## THEORY OF OPERATION The KH2 Series transmitter operation is straightforward. When the Transi Enable (TE) line is taken high, the on-board encoder IC is activated. The encodetects the logic states of the data and address lines. These states are formatt into a 3-word transmission, which continues until the TE line is taken low. Tencoder creates a serial data packet that is used to modulate the transmitter. The transmitter section is based on a simple, but highly-optimized, architecture that achieves a high fundamental output power with low harmonic content. The ensures that most approval standards can be met without external fill components. The KH2 Series transmitter is exceptionally stable over variation time, temperature, and physical shock as a result of the precision SAW deverthat is incorporated as the frequency reference. The transmitted signal may be received by a Linx KH2 Series receiver / decorposed or a Linx LR Series receiver combined with the appropriate decoder Once data is received, it is decoded using a decoder IC or customicrocontroller. The transmitted address bits are checked against the addressettings of the receiving device. If a match is confirmed, the decoder's outplane set to replicate the transmitter's inputs. ## **ENCODER OPERATION** and the 8 bits of the data serially in the order shown in the Encoder / Decoder Timing completes its final cycle and then stops as A0 to A9, D0 to D7 the status of the 10 bits of the address code is applied, the encoder scans and transmits diagram. When a transmission enable signal Once TE falls low, the encoder output (TE) is pulled high. This cycle will repeat cycle when the Transmission Enable line encoder begins a three-word transmission the HT640 encoder from Holtek. The itself for as long as the TE line is held high. The KH2 Series transmitter internally utilizes S Transmission Enabled? 3 Data Words Yes Transmitted Standby Mode Power On switches or PCB wiring, while the data is states. The address pins are usually set to since the decoder output only has two selected using push buttons or electronic transmit particular security codes by DIP is interpreted as logic low by the decoders individually preset to logic high, low, or The status of each address / data pin can be floating. The floating state on the data input 3 Data Words Transmitted Continuously Still Enabled? ransmission switches. The floating state allows the KH2 transmitter to be used without pull- Figure 9: Encoder / Decoder Timing Diagram # SETTING THE TRANSMITTER ADDRESS up to 59,049 (310) unique transmitter-receiver relationships. Tri-state means that transmission to be recognized. If the transmitted address does not match the may be hardwired or configured via a microprocessor, DIP switch, or jumpers. the address lines have three distinct states: high, low, or floating. These pins receiver's local address, then the receiver will take no action. The receiver's address line states must match the transmitter's exactly for a The module provides ten tri-state address lines. This allows for the formation of # POWER SUPPLY REQUIREMENTS therefore, providing a clean power supply for the module should be a high priority during design. supply noise can affect the transmitter modulation; supply as long as noise is less than 20mV. Power from a battery, it can also be operated from a power power source. While it is preferable to power the unit regulator; therefore it requires a clean, well-regulated The module does not have an internal voltage Figure 10: Supply Filter of supply power is poor. These values may need to be adjusted depending the noise present on the supply line. A 10\O resistor in series with the supply followed by a 10 μF tantalum capacitor from V_{CC} to ground will help in cases where the qua ### DATA INPUTS switches, jumpers, microcontrollers, or hardwired on the PCB. require pull-up or pull-down resistors. The states of the data lines can be set interpret the floating state as a low. This feature means that the data lines do which means that they can be high, low, or floating, though the decoder to lines are recorded and encoded for transmission. The data lines are tri-sta When the Transmit Enable (TE) line goes high, the states of the eight data in data lines are refreshed with each cycle, so the data lines can be chang without having to pull TE low. There can be up to a 150mS lag in response the transmitter finishes one cycle then refreshes and starts over. TE line is still high, it will begin the cycle again. This means that the states of t The encoder will send the states of the address and data lines three times. If ## **ENABLING TRANSMISSION** and sends a transmission only when a button is pressed on the remote. wired permanently to $V_{\rm CC}$ and transmission controlled by switching $V_{\rm CC}$ to t pulled low or power to the module is removed. In some cases this line will taken high, the module initiates transmission, which continues until the line module. This is particularly useful in applications where the module powers The module's Transmit Enable (TE) line controls transmission status. Wh ### **USING LADJ** directly to GND, the output power will be at its maximum. Placing a resistor of done by placing a resistor between GND and LADJ. When LADJ is connect range control, lower power consumption, or to meet legal requirements. This lower the output power by up to 7dB, as shown on Page 3 of this data guide. The LADJ line allows the transmitter's output power to be easily adjusted attenuation is not anticipated, it is a good idea to place a resistor pad connect and a fixed resistor substituted for final testing. Even in designs who power to the maximun level allowed by law. The resistor's value can be not product-specific issues that may cause the output power to exceed legal lim to LADJ and GND so that it can be used if needed A variable resistor can be used so that the test lab can precicely adjust the out This is very useful during FCC testing to compensate for antenna gain or otl ## PROTOCOL GUIDELINES While many RF solutions impose data formatting and balancing requirements, Linx RF modules do not encode or packetize the signal content in any manner. The received signal will be affected by such factors as noise, edge jitter, and interference, but it is not purposefully manipulated or altered by the modules. This gives the designer tremendous flexibility for protocol design and interface. Despite this transparency and ease of use, it must be recognized that there are distinct differences between a wired and a wireless environment. Issues such as interference and contention must be understood and allowed for in the design process. To learn more about protocol considerations, we suggest you read Linx Application Note AN-00160. Errors from interference or changing signal conditions can cause corruption of the data packet, so it is generally wise to structure the data being sent into small packets. This allows errors to be managed without affecting large amounts of data. A simple checksum or CRC could be used for basic error detection. Once an error is detected, the protocol designer may wish to simply discard the corrupt data or implement a more sophisticated scheme to correct it. # INTERFERENCE CONSIDERATIONS The RF spectrum is crowded and the potential for conflict with other unwanted sources of RF is very real. While all RF products are at risk from interference, its effects can be minimized by better understanding its characteristics. Interference may come from internal or external sources. The first step is to eliminate interference from noise sources on the board. This means paying careful attention to layout, grounding, filtering, and bypassing in order to eliminate all radiated and conducted interference paths. For many products, this is straightforward; however, products containing components such as switching power supplies, motors, crystals, and other potential sources of noise must be approached with care. Comparing your own design with a Linx evaluation board can help to determine if and at what level design-specific interference is present. External interference can manifest itself in a variety of ways. Low-level interference will produce noise and hashing on the output and reduce the link's overall range. High-level interference is caused by nearby products sharing the same frequency or from near-band high-power devices. It can even come from your own products if more than one transmitter is active in the same area. It is important to remember that only one transmitter at a time can occupy a frequency, regardless of the coding of the transmitted signal. This type of interference is less common than those mentioned previously, but in severe cases it can prevent all useful function of the affected device. Although technically it is not interference, multipath is also a factor to be understood. Multipath is a term used to refer to the signal cancellation effects that occur when RF waves arrive at the receiver in different phase relationships. This effect is a particularly significant factor in interior environments where objects provide many different signal reflection paths. Multipath cancellation results in lowered signal levels at the receiver and, thus, shorter useful distances for the link. ## TYPICAL APPLICATIONS Below is an example of a basic remote control transmitter utilizing the Kl Series transmitter. When a key is pressed on the transmitter, a correspondiline on the receiver goes high. A schematic for the receiver / decoder circuit me be found in the KH2 Series Receiver Data Guide. These circuits a simplemented in the KH2 Series Basic Evaluation kit. They can be easily modified for custom applications and clearly demonstrate the ease of using the Kl Series modules for remote control applications. Figure 11: Basic Remote Control Transmitter The ten-position DIP switch is used to set the address to either ground floating. Since the floating state is a valid state, no pull-up resistors are needs The data lines are pulled high by momentary pushbuttons. Since the floating state is interpreted as a low by the decoder, no pull-down resistors are needs Diodes are used to pull the TE line high when any data line goes high, whisolating the data lines from each other. This will make the transmitter send diswhen any button is pressed without affecting any of the other data lines. The KH2 Series transmitter / encoder module is also suitable for use with the Linx OEM function receivers. These receivers are FCC certified, making production extremely quick. Information on these products can be found on the Linx website at www.linxtechnologies.com. # **BOARD LAYOUT GUIDELINES** If you are at all familiar with RF devices, you may be concerned about specialized board layout requirements. Fortunately, because of the care taken by Linx in designing the modules, integrating them is very straightforward. Despite this ease of application, it is still necessary to maintain respect for the RF stage and exercise appropriate care in layout and application in order to maximize performance and ensure reliable operation. The antenna can also be influenced by layout choices. Please review this data guide in its entirety prior to beginning your design. By adhering to good layout principles and observing some basic design rules, you will be on the path to RF success. The adjacent figure shows the suggested PCB footprint for the module. The actual pad dimensions are shown in the Pad Layout section of this manual. A ground plane (as large as possible) should be placed on a lower layer of your PC board opposite the module. This ground plane can also be critical to the performance of your antenna, which will be discussed later. There should not be any ground or traces under the module on the same layer as the module, just bare PCB. Figure 12: Suggested PCB Layout During prototyping, the module should be soldered to a properly laid-out circuit board. The use of prototyping or "perf" boards will result in horrible performance and is strongly discouraged. No conductive items should be placed within 0.15in of the module's top or sides. Do not route PCB traces directly under the module. The underside of the module has numerous signal-bearing traces and vias that could short or couple to traces on the product's circuit board. The module's ground lines should each have their own via to the ground plane and be as short as possible. AM / OOK receivers are particularly subject to noise. The module should, as much as reasonably possible, be isolated from other components on your PCB, especially high-frequency circuitry such as crystal oscillators, switching power supplies, and high-speed bus lines. Make sure internal wiring is routed away from the module and antenna, and is secured to prevent displacement. The power supply filter should be placed close to the module's V_{CC} line. In some instances, a designer may wish to encapsulate or "pot" the product. Many Linx customers have done this successfully; however, there are a wide variety of potting compounds with varying dielectric properties. Since such compounds can considerably impact RF performance, it is the responsibility of the designer to carefully evaluate and qualify the impact and suitability of such materials. The trace from the module to the antenna should be kept as short as possible. A simple trace is suitable for runs up to 1/8-inch for antennas with wide bandwidth characteristics. For longer runs or to avoid detuning narrow bandwidth antennas, such as a helical, use a 50-ohm coax or 50-ohm microstrip transmission line as described in the following section. ## MICROSTRIP DETAILS 4 board material, the trace width would be 111 mils. The correct trace width c as a transmission line between the module and the antenna. The width is bas common form of transmission line is a coax cable, another is the microstrip. T software for calculating microstrip lines is also available on the Linx websi be calculated for other widths and materials using the information below. Har and the dielectric constant of the board material. For standard 0.062in thick F on the desired characteristic impedance of the line, the thickness of the PC unless the antenna can be placed very close (<1/8in.) to the module. O changing its resonant bandwidth. In order to minimize loss and detuning, son place to another with minimal loss. This is a critical factor, especially in high www.linxtechnologies.com. term refers to a PCB trace running over a ground plane that is designed to ser form of transmission line between the antenna and the module should be use module's antenna can effectively contribute to the length of the anteni frequency products like Linx RF modules, because the trace leading to A transmission line is a medium whereby RF energy is transferred from o Figure 13: Microstrip Formulas | Dielectric Constant | Dielectric Constant Width/Height (W/d) | Effective Dielectric
Constant | Characteristic
Impedance | |---------------------|------------------------------------------|----------------------------------|-----------------------------| | 4.80 | 1.8 | 3.59 | 50.0 | | 4.00 | 2.0 | 3.07 | 51.0 | | 2.55 | 3.0 | 2.12 | 48.0 | ### PAD LAYOUT The following pad layout diagram is designed to facilitate both hand and automated assembly. Figure 14: Recommended PCB Layout ## **PRODUCTION GUIDELINES** The modules are housed in a hybrid SMD package that supports hand or automated assembly techniques. Since the modules contain discrete components internally, the assembly procedures are critical to ensuring the reliable function of the modules. The following procedures should be reviewed with and practiced by all assembly personnel. ### HAND ASSEMBLY Pads located on the bottom of the module are the primary mounting surface. Since these pads are inaccessible during mounting, castellations that run up the side of the module have been provided to facilitate solder wicking to the module's underside. This allows for very quick hand soldering for prototyping and small volume production. Figure 15: Soldering Technique If the recommended pad guidelines have been followed, the pads will protrude slightly past the edge of the module. Use a fine soldering tip to heat the board pad and the castellation, then introduce solder to the pad at the module's edge. The solder will wick underneath the module, providing reliable attachment. Tack one module corner first and then work around the device, taking care not to exceed the times listed below. # Absolute Maximum Solder Times Hand-Solder Temp. TX +225°C for 10 Seconds Hand-Solder Temp. RX +225°C for 10 Seconds Recommended Solder Melting Point +180°C Reflow Oven: +220°C Max. (See adjoining diagram) # AUTOMATED ASSEMBLY For high-volume assembly, most users will want to auto-place the modules. T modules have been designed to maintain compatibility with reflow processi techniques; however, due to the their hybrid nature, certain aspects of t assembly process are far more critical than for other component types. Following are brief discussions of the three primary areas where caution must observed. ### **Reflow Temperature Profile** The single most critical stage in the automated assembly process is the refl stage. The reflow profile below should not be exceeded, since excess temperatures or transport times during reflow will irreparably damage to modules. Assembly personnel will need to pay careful attention to the overprofile to ensure that it meets the requirements necessary to successfully reflect all components while still remaining within the limits mandated by the module. The figure below shows the recommended reflow oven profile for the module. Figure 16: Maximum Reflow Profile ## **Shock During Reflow Transport** Since some internal module components may reflow along with the componer placed on the board being assembled, it is imperative that the modules not subjected to shock or vibration during the time solder is liquid. Should a shobe applied, some internal components could be lifted from their pads, causi the module to not function properly. ### Washability The modules are wash resistant, but are not hermetically sealed. Li recommends wash-free manufacturing; however, the modules can be subject to a wash cycle provided that a drying time is allowed prior to applying electric power to the modules. The drying time should be sufficient to allow any moists that may have migrated into the module to evaporate, thus eliminating to potential for shorting damage during power-up or testing. If the wash contains contaminants, the performance may be adversely affected, even after drying. # **ANTENNA CONSIDERATIONS** The choice of antennas is a critical and often overlooked design consideration. The range, performance, and legality of an RF link are critically dependent upon the antenna. While adequate antenna performance can often be obtained by trial and error methods, antenna design and matching is a complex task. A professionally designed antenna, such as those from Linx, will Figure 17: Linx Antennas help ensure maximum performance and FCC compliance. Linx transmitter modules typically have an output power that is slightly higher than the legal limits. This allows the designer to use an inefficient antenna, such as a loop trace or helical, to meet size, cost, or cosmetic requirements and still achieve full legal output power for maximum range. If an efficient antenna is used, then some attenuation of the output power will likely be needed. This can easily be accomplished by using the LADJ line or a T-pad attenuator. For more details on T-pad attenuator design, please see Application Note AN-00150. A receiver antenna should be optimized for the frequency or band in which the receiver operates and to minimize the reception of off-frequency signals. The efficiency of the receiver's antenna is critical to maximizing range performance. Unlike the transmitter antenna, where legal operation may mandate attenuation or a reduction in antenna efficiency, the receiver's antenna should be optimized as much as is practical. It is usually best to utilize a basic quarter-wave whip until your prototype product is operating satisfactorily. Other antennas can then be evaluated based on the cost, size, and cosmetic requirements of the product. You may wish to review Application Note AN-00500 "Antennas: Design, Application, Performance" ### ANTENNA SHARING In cases where a transmitter and receiver module are combined to form a transceiver, it is often advantageous to share a single antenna. To accomplish this, an antenna switch must be used to provide isolation between the modules so that the full transmitter output power is not put on the sensitive front end of the receiver. There are a wide variety of antenna switches that are cost-effective and easy to use. Among Figure 18: Typical Antenna Switch the most popular are switches from Macom and NEC. Look for an antenna switch that has high isolation and low loss at the desired frequency of operation. Generally, the Tx or Rx status of a switch will be controlled by a product's microprocessor, but the user may also make the selection manually. In some cases, where the characteristics of the Tx and Rx antennas need to be different or antenna switch losses are unacceptable, it may be more appropriate to utilize two discrete antennas. # **GENERAL ANTENNA RULES** The following general rules should help in maximizing antenna performance - Proximity to objects such as a user's hand, body, or metal objects will cause antenna to detune. For this reason, the antenna shaft and tip should positioned as far away from such objects as possible. - 2. Optimum performance will be obtained from a 1/4- or 1/2-wave straight whip mounted at a right angle to the ground plane. In many cases, this isn't desirable for practical or ergonomic reasons, thus, an alternative antenna style such as a helical, loop, or patch may be utilized helical, loop, or patch may be utilized *Figure 19: Ground Plane Orientation* and the corresponding sacrifice in performance accepted. - 3. If an internal antenna is to be used, keep it away from other metal componen particularly large items like transformers, batteries, PCB tracks, and grou planes. In many cases, the space around the antenna is as important as t antenna itself. Objects in close proximity to the antenna can cause directuning, while those farther away will alter the antenna's symmetry. - 4. In many antenna designs, particularly 1/4-wave whips, the ground plane acts as a counterpoise, forming, in essence, a 1/2-wave dipole. For this reason, adequate ground plane area is essential. The ground plane can be a metal case or ground-fill areas on a circuit board. Ideally, it should have a surface area ≥ the overall length of the 1/4-wave radiating element. This is often not practical due to size and configuration constraints. In these instances, a designer must make the best use of the area available to create as much ground plane as Figure 20: Dipole Antenna possible in proximity to the base of the antenna. In cases where the antenna remotely located or the antenna is not in close proximity to a circuit boa ground plane, or grounded metal case, a metal plate may be used to maxim the antenna's performance. - 5. Remove the antenna as far as possible from potential interference sources. A frequency of sufficient amplitude to enter the receiver's front end will redusystem range and can even prevent reception entirely. Switching pov supplies, oscillators, or even relays can also be significant sources of poten interference. The single best weapon against such problems is attention placement and layout. Filter the module's power supply with a high-frequer bypass capacitor. Place adequate ground plane under potential sources of no to shunt noise to ground and prevent it from coupling to the RF stage. Shi noisy board areas whenever practical. - 6. In some applications, it is advantageous to place the module and antenna away from the main equipment. This can avoid interference problems and allows the antenna to be oriented for optimum performance. Always use 50Ω coax, like RG-174, for the remote feed. Figure 21: Remote Ground Pla # **COMMON ANTENNA STYLES** There are literally hundreds of antenna styles and variations that can be employed with Linx RF modules. Following is a brief discussion of the styles connectors offer outstanding performance at a low price. Application Notes AN-00100, AN-00140, and AN-00500. Linx antennas and most commonly utilized. Additional antenna information can be found in Linx # model. To meet this need, Linx offers a wide variety of straight A whip-style antenna provides outstanding overall performance connectorized mounting styles. and reduced-height whip-style antennas in permanent and performance and cosmetic appeal of a professionally-made wire or rod, but most designers opt for the consistent and stability. A low-cost whip is can be easily fabricated from a to reduce the overall height of the antenna by using a helical way to minimize the antenna's physical size for compact winding. This reduces the antenna's bandwidth, but is a great applications. This also means that the physical appearance is Its size and natural radiation resistance make it well matched to antenna's overall length. Since a full wavelength is often quite The wavelength of the operational frequency determines an not always an indicator of the antenna's frequency easily determined using the adjacent formula. It is also possible long, a partial 1/2- or 1/4-wave antenna is normally employed. Linx modules. The proper length for a straight 1/4-wave can be F = operating frequency L = length in feet of Specialty Styles Linx offers a wide variety of specialized antenna styles. overall antenna size while maintaining reasonable objects, so care must be exercised in layout and placement narrow and the antenna can detune in proximity to other performance. A helical antenna's bandwidth is often quite Many of these styles utilize helical elements to reduce the ### Loop Style A loop- or trace-style antenna is normally printed directly on a production. In addition, printed styles are difficult to engineer, PCB dielectric, which can cause consistency issues during applications. They are also very sensitive to changes in layout and antennas are generally inefficient and useful only for short-range usually product specific. Despite the cost advantages, loop-style styles. The element can be made self-resonant or externally product's PCB. This makes it the most cost-effective of antenna analyzer. An improperly designed loop will have a high SWR at the requiring the use of expensive equipment, including a network resonated with discrete components, but its actual layout is desired frequency, which can cause instability in the RF stage. to a product's PCB. These tiny antennas do not require testing and provide excellent performance in light of their small size. They offer a preferable alternative to the often-problematic "printed" Linx offers low-cost planar and chip antennas that mount directly ### **ONLINE RESOURCES** www.linxtechnologies.com - Latest News - Data Guides - Application Notes - Knowledgebase - Software Updates If you have questions regarding any Linx product and have Internet acce make www.linxtechnologies.com your first stop. Our website is organized in more. Be sure to visit often! application notes, a comprehensive knowledgebase, FCC information, and mu products and services of Linx. It's all here: manual and software update Linx website gives you instant access to the latest information regarding intuitive format to immediately give you the answers you need. Day or night, ### www.antennafactor.com antennas to low-cost whips, domes to which are optimized for use with our RF a diverse array of antenna styles, many of design one to meet your requirements modules. From innovative embeddable likely has an antenna for you, or car Yagis, and even GPS, Antenna Factor The Antenna Factor division of Linx offers ### www.connectorcity.com at a remarkably low cost allows standard and custom RF connectors to be offered compliant types such as RP-SMAs that are an ideal selection of high-quality RF connectors, including FCCfocuses on high-volume OEM requirements, which match for our modules and antennas. Connector City Through its Connector City division, Linx offers a wide ## LEGAL CONSIDERATIONS with all laws governing its use in the country of operation. the sale or operation of the device, and agrees to utilize the component in keeping worldwide. The purchaser understands that approvals may be required prior to external components to function. The modules are intended to allow for full Part NOTE: Linx RF modules are designed as component devices that require 15 compliance; however, they are not approved by the FCC or any other agency clear idea of what is involved in obtaining the necessary approvals to legally market your desire is not only to expedite the design process, but also to assist you in achieving a uncertainty and even fear of the approval and certification process. Here at Linx, our possible and what is legally acceptable in the country where operation is intended. Many completed product. manufacturers have avoided incorporating RF into their products as a When working with RF, a clear distinction must be made between what is technically result of compliance testing in our HP / Emco-equipped test center. Final compliance testing is radiates RF energy be approved, that is, tested for compliance and issued a unique included with Linx evaluation kits or may be obtained from the Linx Technologies website, Washington or from your local government bookstore. Excerpts of applicable sections are strongly recommended that a copy be obtained from the Government Printing Office in however, all regulations applicable to this module are contained in Volume 0-19. It is the Federal Communications Commission (FCC). The regulations are contained in Title regulations governing RF devices and the enforcement of them are the responsibility of be issued an ID number that is to be clearly placed on each product manufactured. time, such as UL, CLASS A / B, etc. Once your completed product has passed, you will Many labs can also provide other certifications that the product may require at the same then performed by one of the many independent testing laboratories across the country. identification number. This is a relatively painless process. Linx offers full EMC prewww.linxtechnologies.com. In brief, these rules require that any device that intentionally 47 of the Code of Federal Regulations (CFR). Title 47 is made up of numerous volumes; In the United States, the approval process is actually quite straightforward. The procedures used to test intentional radiators, such as Linx RF modules, for compliance Questions regarding interpretations of the Part 2 and Part 15 rules or measurement with the technical standards of Part 15, should be addressed to: Customer Service Branch, MS 1300F2 **Federal Communications Commission** Equipment Authorization Division 7435 Oakland Mills Road Columbia, MD 21046 Phone: (301) 725-1585 Fax: (301) 344-2050 E-Mail: labinfo@fcc.gov product abroad, you should contact Linx Technologies to determine the specific suitability of the module to your application. to allow all international standards to be met. If you are considering the export of your International approvals are slightly more complex, although Linx modules are designed required to address these issues, the additional usefulness and profitability added to a frustration that is typically experienced with a discrete design is eliminated. Approval is product by RF makes the effort more than worthwhile. frequency selected, and physical packaging. While some extra cost and design effort are still dependent on many factors, such as the choice of antennas, correct use of the All Linx modules are designed with the approval process in mind and thus much of the # **ACHIEVING A SUCCESSFUL RF IMPLEMENTATION** particular design path, but most projects follow steps vary widely, it is difficult to recommend one integration. Since the capabilities of each customer of the steps necessary to ensure a successful RF design and approval process is greatly simplified. It dimension to any product. It also means that similar to those shown at the right. is still important, however, to have an objective view premade RF modules, such as the LR Series, the bring the product successfully to market. By utilizing additional effort and commitment will be needed to Adding an RF stage brings an exciting new will not only survive implementing RF, you may even find the process enjoyat and taking advantage of the resources we offer, you commitment. By choosing Linx as your RF partner Simple" is more than just a motto, it's our that RF is a complex science requiring the highest technical support, are offered because we recognize unusual for a high-volume component manufacturer. antenna design and FCC prequalification) that are caliber of products and support. "Wireless Made These services, along with an exceptional level of notice that Linx offers a variety of services (such as In reviewing this sample design path, you may CONSULT LINX REGARDING ANTENNA OPTIONS AND DESIGN COMMENCE SELLING PRODUCT SEND PRODUCTION-READY PROTOTYPE TO LINX FOR EMC PRESCREENING ORDER EVALUATION KIT(S) CIRCUIT AND DEBUG RESEARCH RF OPTIONS GENERATED BY LINX CHOOSE LINX MODULE BASIC HOOKUP DECIDE TO UTILIZE RF SEND TO PART 15 TEST FACILITY LAY OUT BOARD RECEIVE FCC ID # Implementing RF Typical Steps For # HELPFUL APPLICATION NOTES FROM LINX contacting the Linx literature department. wish to obtain one or more of the following application notes, which address the maximum possible performance. As you proceed with your design, you m should be considered to ensure that the modules function correctly and deliv applications notes are available online at www.linxtechnologies.com or depth key areas of RF design and application of Linx products. The It is not the intention of this manual to address in depth many of the issues the | V NI-00200 | AN-00300 | AN-00160 | AN-00150 | AN-00140 | AN-00130 | AN-00125 | AN-00100 | NOTE | (| |------------|------------------------------|------------------------------------------------------|--------------------------------------|------------------------------------------------|--------------------------------------------------|---------------------------------------------------------|-------------------------------------------|------------------------|---| | | Addressing Linx OEM Products | Considerations For Sending Data Over a Wireless Link | Use and Design of T-Attenuation Pads | The FCC Road: Part 15 From Concept To Approval | Modulation Techniques For Low-Cost RF Data Links | Considerations For Operation Within The 260-470MHz Band | RF 101: Information for the RF Challenged | APPLICATION NOTE TITLE | - | # U.S. CORPORATE HEADQUARTERS LINX TECHNOLOGIES, INC. 159 ORT LANE MERLIN, OR 97532 PHONE: (541) 471-6256 FAX: (541) 471-6251 www.linxtechnologies.com ### Disclaimer Linx Technologies is continually striving to improve the quality and function of its products. For this reason, we reserve the right to make changes to our products without notice. The information contained in this Overview Guide is believed to be accurate as of the time of publication. Specifications are based on representative lot samples. Values may vary from lot-to-lot and are not guaranteed. "Typical" parameters can and do vary over lots and application. Linx Technologies makes no guarantee, warranty, or representation regarding the suitability of any product for use in any specific application. It is the customer's responsibility to verify the suitability of the part for the intended application. NO LINX PRODUCT IS INTENDED FOR USE IN ANY APPLICATION WHERE THE SAFETY OF LIFE OR PROPERTY IS AT RISK. adjustments, costs, and expenses incurred by Linx Technologies as a result of or arising from any Products refund limited to the original product purchase price. Devices described in this publication may contain sold by Linx Technologies to Customer. Under no conditions will Linx Technologies be responsible for warranty, strict liability, or negligence. Customer assumes all liability (including, without limitation, liability proprietary, patented, or copyrighted techniques, components, or materials. Under no circumstances shall losses arising from the use or failure of the device in any application, other than the repair, replacement, or representatives from and against all claims, damages, actions, suits, proceedings, demands, assessments, hold harmless Linx Technologies and its officers, employees, subsidiaries, affiliates, distributors, and from third parties, arising from the use of the Products. The Customer will indemnify, defend, protect, and for injury to person or property, economic loss, or business interruption) for all claims, including claims theories of recovery asserted by Customer, including, without limitation, breach of contract, breach of OR NON-CONFORMING PRODUCTS OR FOR ANY OTHER BREACH OF CONTRACT BY LINX CUSTOMER'S INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING IN ANY WAY FROM ANY DEFECTIVE PARTICULAR PURPOSE. IN NO EVENT SHALL LINX TECHNOLOGIES BE LIABLE FOR ANY OF Linx Technologies DISCLAIMS ALL WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A any user be conveyed any license or right to the use or ownership of such items. TECHNOLOGIES. The limitations on Linx Technologies' liability are applicable to any and all claims or © 2008 by Linx Technologies, Inc. The stylized Linx logo, Linx, "Wireless Made Simple", CipherLinx, and the stylized CL logo are the trademarks of Linx Technologies, Inc. Printed in U.S.A.