FCSP0530TR ## Vishay High Power Products # FlipKY® Chip Scale Package Schottky Barrier Rectifier, 0.5 A FlipKY® | PRODUCT SUMMARY | | | | |--------------------|-------|--|--| | I _{F(AV)} | 0.5 A | | | | V_{R} | 30 V | | | ## **FEATURES** - Ultra low V_F to footprint area - Very low profile (< 0.6 mm) - Low thermal resistance - Supplied tested and on tape and reel ## **APPLICATIONS** - · Reverse polarity protection - · Current steering - Freewheeling - Flyback - Oring ### DESCRIPTION Vishay's FlipKY® product family utilizes wafer level chip scale packaging to deliver Schottky diodes with the lowest V_F to PCB footprint area in industry. The three pad 0.9 mm x 1.2 mm devices can deliver up to 0.5 A and occupy only 1.08 mm² of board space. The anode and cathode connections are made through solder bump pads on one side of the silicon enabling designers to strategically place the diodes on the PCB. This design not only minimizes board space but also reduces thermal resistance and inductance, which can improve overall circuit efficiency. Typical applications include hand-held, portable equipment such as cell phones, MP3 players, bluetooth, GPS, PDAs, and portable hard disk drives where space savings and performance are crucial. | MAJOR RATINGS AND CHARACTERISTICS | | | | | |-----------------------------------|----------------------------------|-------------|-------|--| | SYMBOL | CHARACTERISTICS | MAX. | UNITS | | | V _{RRM} | | 30 | V | | | I _{F(AV)} | Rectangular waveform | 0.5 | ^ | | | I _{FSM} | - 17 M | 190 | Α | | | V _F | 0.5 Apk, T _J = 125 °C | 0.33 | V | | | T _J | DZSC. | - 55 to 150 | °C | | | VOLTAGE RATINGS | | | | |--------------------------------------|-----------|------------|-------| | PARAMETER | SYMBOL | FCSP0530TR | UNITS | | Maximum DC reverse voltage | V_{R} | 30 | V | | Maximum working peak reverse voltage | V_{RWM} | 30 | V | # FCSP0530TR Document Number: 94492 | ABSOLUTE MAXIMUM RATINGS | | | | | | |---------------------------------------|---|--|--------------------------------|--------|-------| | PARAMETER | SYMBOL | TEST CONDITIONS | | VALUES | UNITS | | Maximum average forward current | I _{F(AV)} 50 % duty cycle at T _{PCB} = 133 °C, rectangular waveform | | 0.5 | | | | Maximum peak one cycle | | 5 μs sine or 3 μs rect. pulse | Following any rated | 190 | Α | | non-repetitive surge current at 25 °C | I _{FSM} | 10 ms sine or 6 ms rect. pulse | rated V _{RRM} applied | 10 | | | Non-repetitive avalanche energy | E _{AS} | T _J = 25 °C, I _{AS} = 2.0 A, L = 5.0 mH | | 5 | mJ | | Repetitive avalanche current | I _{AR} | Current decaying linearly to zero in 1 μ s Frequency limited by T_J maximum $V_A = 1.5 \times V_R$ typical 0.5 | | Α | | | ELECTRICAL SPECIFICATIONS | | | | | | | |---------------------------------|--------------------------------|---|---------------------------------------|--------|------|-------| | PARAMETER | SYMBOL | TEST CONDITIONS | | TYP. | MAX. | UNITS | | | V _{FM} ⁽¹⁾ | 0.5 A | T _J = 25 °C | 0.40 | 0.44 | V | | Maximum forward voltage drop | | 1 A | | 0.45 | 0.49 | | | See fig. 1 | | 0.5 A | - T _J = 125 °C | 0.29 | 0.33 | | | | | 1 A | | 0.36 | 0.39 | | | Maximum reverse leakage current | | T _J = 25 °C | $V_{\rm R}$ = Rated $V_{\rm R}$ | 10 | 50 | μΑ | | See fig. 2 | | T _J = 125 °C | v _R = naleu v _R | 5 | 15 | mA | | Maximum junction capacitance | C _T | $V_R = 5 V_{DC}$ (test signal range 100 kHz to 1 MHz) 25 °C | | - | 90 | pF | | Maximum voltage rate of change | dV/dt | Rated V _R - 10 00 | | 10 000 | V/µs | | $^{^{(1)}\,}$ Pulse width < 300 $\mu s,$ duty cycle < 2 % | THERMAL - MECHANICAL SPECIFICATIONS | | | | | |---|--|-----------------|-------------|-------| | PARAMETER | SYMBOL | TEST CONDITIONS | VALUES | UNITS | | Maximum junction and storage temperature range | T _J ⁽¹⁾ , T _{Stg} | | - 55 to 150 | °C | | Typical thermal resistance, junction to PCB | R _{thJL} (2) | DC operation | 35 | °C/W | | Typical thermal resistance, junction to ambient | R _{thJA} | | 150 | C/VV | ## Notes - $\frac{dP_{tot}}{dT_J} < \frac{1}{R_{thJA}}$ thermal runaway condition for a diode on its own heatsink - (2) Mounted on minimum footprint PCB # FlipKY® Chip Scale Package Schottky Barrier Rectifier, 0.5 A # Vishay High Power Products Fig. 1 - Maximum Forward Voltage Drop Characteristics (Per Leg) Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage (Per Leg) Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage (Per Leg) Fig. 4 - Maximum Allowable Case Temperature vs. Average Forward Current (Per Leg) Fig. 5 - Forward Power Loss Characteristics (Per Leg) t_p - Square Wave Pulse Duration (μs) Fig. 6 - Maximum Non-Repetitive Surge Current (Per Leg) ### Note (1) Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{th,JC}$; $Pd = Forward power loss = I_{F(AV)} \times V_{FM}$ at $(I_{F(AV)}/D)$ (see fig. 6); $Pd_{REV} = Inverse$ power loss = $V_{R1} \times I_R$ (1 - D); I_R at 80 % V_R applied # FCSP0530TR Fig. 7 - Unclamped Inductive Test Circuit | LINKS TO RELATED DOCUMENTS | | | | |--|---------------------------------|--|--| | Dimensions http://www.vishay.com/doc?95049 | | | | | Part marking information | http://www.vishay.com/doc?95060 | | | | Packaging information | http://www.vishay.com/doc?95062 | | | Vishay ## **Disclaimer** All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 www.vishay.com