

Product Bulletin HCR4148 September 1996

Surface Mount Switching Diode Types HCR4148D, HCR4148M, TX, TXV

HCR4148D Dual Isolated Switching Diode

HCR4148M Single Switching Diode

Features

- Constructed from ceramic, metal, and glass for rugged environments
- Eutectic mounted silicon die.
- · TX and TXV processing available

Description

The HCR4148 series are hermetically sealed, ceramic surface mount switching diodes designed for the High Reliability user. Specifications are similar to those of the 1N4148-1 as defined by MIL-PRF-19500/116. The miniature three and four pin packages are ideal where PC board space and device weight are important design considerations.

High reliability processing per MIL-PRF-19500 TX or TXV equivalent levels are available on request. Typical screening and lot acceptance testing is provided on page 13-4.

MIL-PRF-19500/116 may be used as a guide for more detail. TX and TXV devices are 100% thermal response tested. To order add "TX" or "TXV" suffix to part number (i.e. HCR4148MTX).

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

Operating Junction Temperature	-65° C to +200° C
Storage Temperature	-65° C to +200° C
Reverse Breakdown Voltage (BV _R)	100 V
Continuous Forward Current (Io)	200 mA
Surge Current (IESM, to = 1/120 sec.)	

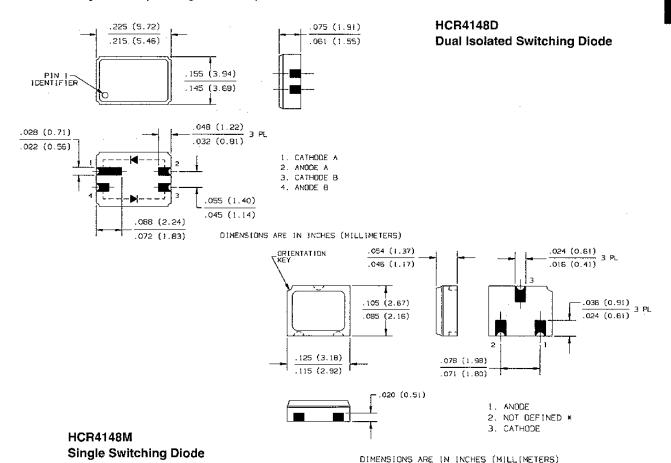
Part Number	Rejo	Power Dissipation(1)	Burn-in Current ⁽²⁾
HCR4148M	175° C/W	300 mW	100 mA
HCR4148D	100° C/W ⁽³⁾	200 mW/diode	80 mA/diode

Notes:

 This rating is given as an aid to designers and applies to a device that is soldered to a substrate (i.e. PC board) that is held at 25°C.

(2) This value is the maximum D.C. current that can be conducted while the device is operating in a burn-in test socket where convection cooling is limited. (Applies to TX and TXV processing only).

(3) This rating given for the dual diode device applies when both devices are being driven equally.



Types HCR4148D, HCR4148M, TX, TXV

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Min	Max	Units	Test Conditions
V _{F1}	Forward Voltage		1.0	V	I _F = 10 mA
V _{F2}	Forward Voltage		1.2	V	I _F = 100 mA
V _(BR)	Breakdown Voltage	100		٧	I _R = 100 μA
I _{R1}	Reverse Leakage Current		25	nA	V _R = 20 V
l _{R2}	Reverse Leakage Current		500	nA	V _R = 75 V
l _{R3}	Reverse Leakage Current		50	μА	V _R = 20 V, T _A = 150°C
I _{R4}	Reverse Leakage Current		100	μA	V _R = 75 V, T _A = 150°C
V _{F3}	Forward Voltage		0.80	- -	I _F = 10 mA, T _A = 150°C
V _{F4}	Forward Voltage		1.2	V	I _F = 100 mA, T _A = -55°C
IFSM	Surge Current	1		Α	t = 8.3 ms
V _(fr)	Forward Recovery Voltage		5.0	V	I _F = 50 mA, Recover to 110% of V _F at I _F = 50 mA
*t _(fr)	Forward Recovery Time		20	ns	$I_F = 50$ mA, Recover to 110% of $V_{F,at} I_F = 50$ mA
*C ₁	Junction Capacitance		4.0	pF	V _R = 0 V, f = 1MHz, Vsig = 50 mV, p-p max
*C2	Junction Capacitance		2.8	pF	V _R = 1.5 V, f = 1MHz, Vsig = 50 mV, p-p max
*t _r	Reverse Recovery Time		5.0	ns	$I_F = I_r = 10$ mA, $I_{rr} = 1.0$ mA, $R_L = 100$ Ω , $C = 3$ pF

^{*}These tests are guaranteed by die design and are not performed on assembled devices.

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.