

Vishay High Power Products

HEXFRED® Ultrafast Soft Recovery Diode, 240 A

PRODUCT SUMMARY				
I _{F(AV)}	240 A			
V_{R}	400 V			
I _{F(DC)} at T _C	197 A at 100 °C			

FEATURES

- Very low Q_{rr} and t_{rr}
- Lead (Pb)-free
- Designed and qualified for industrial level

ROHS

BENEFITS

- · Reduced RFI and EMI
- · Reduced snubbing

DESCRIPTION

HEXFRED® diodes are optimized to reduce losses and EMI/RFI in high frequency power conditioning systems. An extensive characterization of the recovery behavior for different values of current, temperature and dI/dt simplifies the calculations of losses in the operating conditions. The softness of the recovery eliminates the need for a snubber in most applications. These devices are ideally suited for power converters, motors drives and other applications where switching losses are significant portion of the total losses.

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	TER SYMBOL TEST CONDITIONS		MAX.	UNITS	
Cathode to anode voltage	V _R	513.13	400	V	
Canting of a managed assument	-	T _C = 25 °C	395		
Continuous forward current	lF	T _C = 100 °C	197	A	
Single pulse forward current	I _{FSM}	Limited by junction temperature	900		
Non-repetitive avalanche energy	E _{AS}	L = 100 μH, duty cycle limited by maximum T _J	1.4	mJ	
Mariana anno dissipation		T _C = 25 °C	658	10/	
Maximum power dissipation	P_D	T _C = 100 °C	263	W	
Operating junction and storage temperature range	T _J , T _{Stg}		- 55 to + 150	°C	

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
Cathode to anode breakdown voltage	V _{BR}	I _R = 100 μA		400	-	-	
_ / Pt \ TG-	I _F = 120 A			-	1.1	1.47	V
Maximum forward voltage	V_{FM}	I _F = 240 A See fig. 1		-	1.3	1.5	
		I _F = 120 A, T _J = 125 °C		-	1.0	1.2	
Maximum reverse leakage current	I _{RM}	$T_J = 125 ^{\circ}\text{C}, V_R = 400 ^{\circ}\text{V}$ See fig. 2		-	660	5000	μΑ
Junction capacitance	C _T	V _R = 200 V See fig. 3		-	280	380	pF
Series inductance	L _S	From top of terminal hole to mounting plane		•	6.0	-	nH

Vishay High Power Products

HEXFRED® Ultrafast Soft Recovery Diode, 240 A

Document Number: 94063

DYNAMIC RECOVERY CHARACTERISTICS (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
		$I_F = 1.0 \text{ A}, dI_F/dt = 200 \text{ A/}\mu\text{s}, V_R = 30 \text{ V}$		-	50	-	
Reverse recovery time See fig. 5	t _{rr}	T _J = 25 °C		=	77	120	ns
occ lig. o		T _J = 125 °C		=	290	440	
Peak recovery current	I IDDM	T _J = 25 °C		=	7.5	14	
See fig. 6		IRRM	T _J = 125 °C	$I_F = 140 \text{ A}$	=	16	30
Reverse recovery charge	Q _{rr}	T _J = 25 °C	$dI_F/dt = 200 \text{ A/}\mu\text{s}$ $V_R = 200 \text{ V}$	=	290	780	nC
See fig. 7		Q _{rr}	T _J = 125 °C	- N	-	2300	6300
Peak rate of recovery current	all /alk	T _J = 25 °C		=	320	-	Λ/μο
See fig. 8	dI _{(rec)M} /dt	T _J = 125 °C		=	270	-	A/μs

THERMAL - MECHANICAL SPECIFICATIONS							
PARAMETER		SYMBOL	MIN.	TYP.	MAX.	UNITS	
Maximum junction and storage temperate	ure range	T _J , T _{Stg}	- 55	-	150	°C	
Thermal resistance, junction to case	per leg	D	-	-	0.19	°C/W	
mermanesistance, junction to case	per module	R_{thJC}	-	-	0.095		
Typical thermal resistance, case to heatsink		R _{thCS}	-	0.10	-		
Weight			-	68	-	g	
			-	2.4	-	oz.	
Mounting torque	(1)		30 (3.4)	-	40 (4.6)	N	
Mounting torque	center hole		12 (1.4)	-	18 (2.1)	N ⋅ m (lbf ⋅ in)	
Terminal torque			30 (3.4)	-	40 (4.6)	(151 * 111)	
Vertical pull 2" lever pull			=	-	80	lbf ⋅ in	
			-	-	35	ווויוטו	

Note

⁽¹⁾ Mounting surface must be smooth, flat, free of burrs or other protrusions. Apply a thin even film or thermal grease to mounting surface. Gradually tighten each mounting bolt in 5 to 10 lbf · in steps until desired or maximum torque limits are reached.

HEXFRED® Ultrafast Soft Recovery Diode, 240 A

Vishay High Power Products

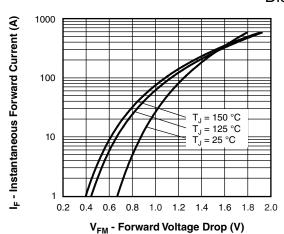


Fig. 1 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current (Per Leg)

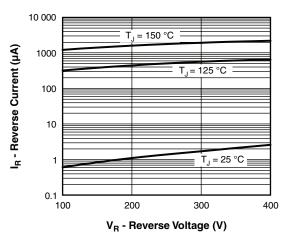


Fig. 2 - Typical Reverse Current vs. Reverse Voltage (Per Leg)

Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage (Per Leg)

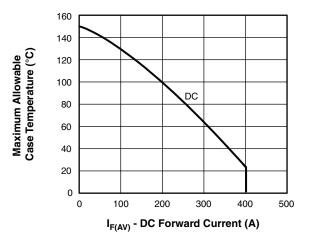


Fig. 4 - Maximum Allowable Case Temperature vs. DC Forward Current (Per Leg)

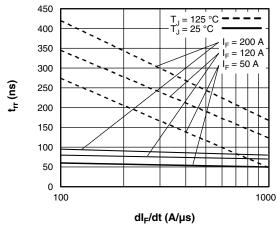


Fig. 5 - Typical Reverse Recovery Time vs. dl_F/dt (Per Leg)

Fig. 6 - Typical Recovery Current vs. dI_F/dt (Per Leg)

Vishay High Power Products

HEXFRED® Ultrafast Soft Recovery Diode, 240 A

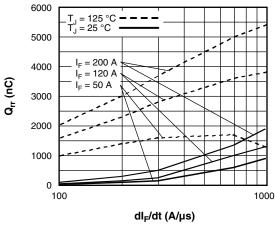


Fig. 7 - Typical Stored Charge vs. dl_F/dt (Per Leg)

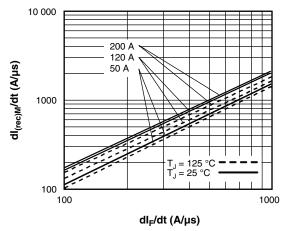


Fig. 8 - Typical dI_{(rec)M}/dt vs. dI_F/dt (Per Leg)

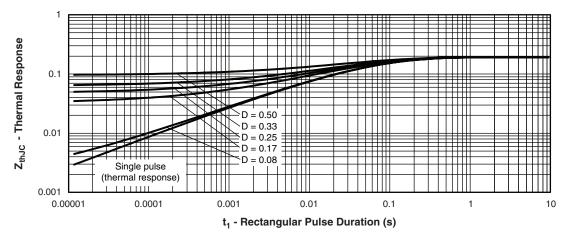


Fig. 9 - Maximum Thermal Impedance Z_{thJC} Characteristics (Per Leg)

HEXFRED® Ultrafast Soft Recovery Diode, 240 A

Vishay High Power Products

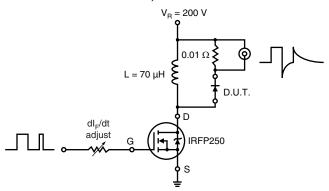
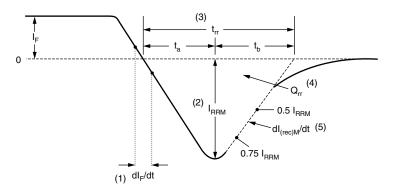



Fig. 10 - Reverse Recovery Parameter Test Circuit

- (1) dI_F/dt rate of change of current through zero crossing
- (4) \mathbf{Q}_{rr} area under curve defined by \mathbf{t}_{rr} and \mathbf{I}_{RRM}
- (2) I_{RRM} peak reverse recovery current
- $Q_{rr} = \frac{t_{rr} \times I_{RRM}}{2}$
- (3) $\rm t_{rr}$ reverse recovery time measured from zero crossing point of negative going $\rm I_F$ to point where a line passing through 0.75 $\rm I_{RBM}$ and 0.50 $\rm I_{RBM}$ extrapolated to zero current.
- (5) $dI_{(rec)M}/dt$ peak rate of change of current during t_b portion of t_{rr}

Fig. 11 - Reverse Recovery Waveform and Definitions

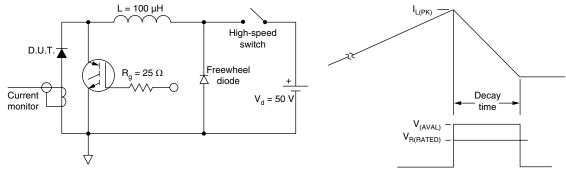


Fig. 12 - Avalanche Test Circuit and Waveforms

Vishay High Power Products

HEXFRED® Ultrafast Soft Recovery Diode, 240 A

ORDERING INFORMATION TABLE

1 - HEXFRED® family, electron irradiated

2 - Average current rating

3 - NJ = TO-244

4 - Voltage rating (400 V)

5 - C = Common cathode

6 - Lead (Pb)-free

LINKS TO RELATED DOCUMENTS				
Dimensions	http://www.vishay.com/doc?95021			

www.vishay.com For technical questions, contact: ind-modules@vishay.com

ions, contact: ind-modules@vishay.com Document Number: 94063

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com