

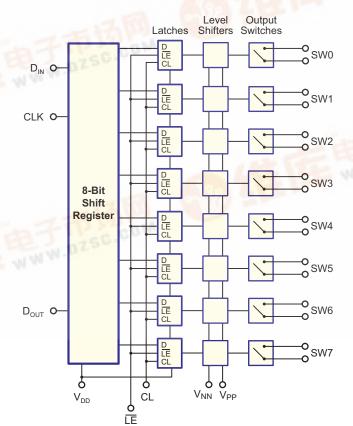
250V Low Charge Injection 8-Channel High Voltage Analog Switch

Features

- ► HVCMOS® technology for high performance
- Very low quiescent power dissipation -10μA
- Low parasitic capacitances
- DC to 10MHz analog signal frequency
- -60dB typical output off isolation at 5MHz
- -60dB typical off-isolation at 5MHz
- CMOS logic circuitry for low power
- Excellent noise immunity
- On-chip shift register, latch and clear logic circuitry
- ► Flexible high voltage supplies
- Surface mount packages

Applications

- Medical ultrasound imaging
- Non-destructive evaluation
- Inkjet printer heads
- Optical MEMS modules


General Description

The Supertex HV214 is a low charge injection 8-channel high voltage analog switch integrated circuit (IC) intended for use in applications requiring high voltage switching controlled by low voltage control signals, such as medical ultrasound imaging, piezoelectric transducer drivers, inkjet printer heads and optical MEMS modules.

Input data is shifted into an 8-bit shift register that can then be retained in an 8-bit latch. To reduce any possible clock feedthrough noise, the latch enable bar should be left high until all bits are clocked in. Data are clocked in during the rising edge of the clock. Using HVCMOS® technology, this device combines high voltage bilateral DMOS switches and low power CMOS logic to provide efficient control of high voltage analog signals.

The device is suitable for various combinations of high voltage supplies, e.g., V_{PP}/V_{NN} : +40V/-210V, +125V/-125V, +210V/-40V.

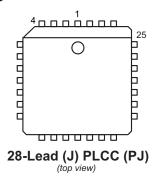
Block Diagram

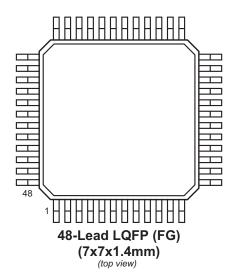
Ordering Information

Package Options							
Device	28-Lead PLCC	48-Lead LQFP/ TQFP(1.4mm)					
LI\/24.4	HV214PJ	HV214FG					
HV214	HV214PJ-G	HV214FG-G					

-G indicates the part is RoHS compliant (Green)

Absolute Maximum Ratings


Parameter	Value
V _{DD} logic power supply voltage	-0.5V to +15V
V _{PP} - V _{NN} supply voltage	260V
V _{PP} positive high voltage supply	-0.5V to V _{NN} +250V
V _{NN} negative high voltage supply	+0.5V to -260V
Logic input voltages	-0.5V to V _{DD} +0.3V
Analog signal range	$V_{_{\mathrm{NN}}}$ to $V_{_{\mathrm{PP}}}$
Peak analog signal current/channel	2.5A
Storage temperature	-65°C to +150°C
Power dissipation:	4 2)4/
28-Lead PLCC 48-Lead LQFP/ TQFP (1.4mm)	1.2W 1.0W
12 = 22 = 21 : 1	


Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Operating Conditions

Symbol	Parameter	Value
V _{DD}	Logic power supply voltage	4.5V to 13.2V
V _{PP}	Positive high voltage supply	40V to V _{NN} +250V
V _{NN}	Negative high voltage supply	-40V to -210V
V _{IH}	High level input logic voltage	V_{DD} -1.5V to V_{DD}
V _{IL}	Low-level input logic voltage	0V to 1.5V
V _{SIG}	Analog signal voltage peak-to-peak	V_{NN} +10V to V_{PP} -10V
T _A	Operating free air temperature	0°C to 70°C

Pin Configurations

Product Marking

Top Marking

Bottom Marking

CCCCCCCCC

YY = Year Sealed WW = Week Sealed

L = Lot Number C = Country of Origin

A = Assembler ID*

= "Green" Packaging *May be part of top marking

28-Lead PLCC (PJ)

Top Marking

ccccccc

YY = Year Sealed WW = Week Sealed

L = Lot Number C = Country of Origin

Bottom Marking A = Assembler ID* _ = "Green" Packaging

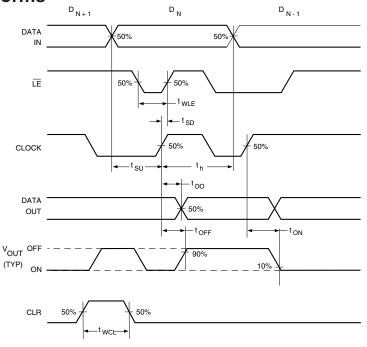
*May be part of top marking

48-Lead LQFP (FG)

DC Electrical Characteristics (T_A = 25°C, over recommended operating conditions unless otherwise noted)

Sym	Parameter Parameter	Min	Тур	Max		Conditions		
		_	-	55		$I_{SIG} = 5.0 \text{mA}$ $V_{PP} = +40 \text{V}$		
		_	_	49		$I_{SIG} = 200 \text{mA}$ $V_{NN} = -160 \text{V}$		
		_	_	42	-	$I_{SIG} = 5.0 \text{mA}$ $V_{PP} = +125 \text{V}$		
R _{ons}	Small signal switch on-resistance	_	_	36	Ω	$I_{SIG} = 200 \text{mA}$ $V_{NN} = -100 \text{V}$		
		_	_	38		I _{sig} = 5.0mA ₁ / - ±210\/		
		-	-	32	_	$I_{SIG} = 5.0 \text{mA}$ $V_{PP} = +210 \text{V}$ $V_{NN} = -40 \text{V}$		
ΔR_{ONS}	Small signal switch On-resistance matching	-	-	20	%	I _{SIG} = 5mA, V _{PP} = +125V, V _{NN} = -125V		
R _{onl}	Large signal switch On-resistance	-	23	-	Ω	$V_{SIG} = V_{PP} - 10V$, $I_{SIG} = 1A$		
I _{SOL}	Switch off leakage per switch	-	-	10	μA	$V_{SIG} = V_{PP} -10V \& V_{NN} +10V$		
	DC offset switch off	-	-	300	mV	$R_{LOAD} = 100 K\Omega$		
	DC offset switch on	-	-	500	mV	$R_{LOAD} = 100 K\Omega$		
I _{PPQ}	Quiescent V _{PP} supply current	-	-	50	μA	All switches off		
I _{NNQ}	Quiescent V _{NN} supply current	-	-	-50	μA	All switches off		
I _{PPQ}	Quiescent V _{PP} supply current	-	-	50	μΑ	All switches on, I _{sw} = 5.0mA		
I _{NNQ}	Quiescent V _{NN} supply current	-	-	-50	μΑ	All switches on, I _{sw} = 5.0mA		
	Switch output peak current	-	-	2.0	Α	V _{SIG} duty cycle 0.1%		
f _{sw}	Output switch frequency	-	-	50	kHz	Duty cycle = 50%		
		-	-	7.0		$V_{PP} = +40V$ $V_{NN} = -160V$		
I _{PP}	Average V _{PP} supply current	-	-	5.0	mA	$V_{PP} = +100V$ $V_{NN} = -100V$		
		-	-	5.0		$V_{PP} = +160V$ $V_{NN} = -40V$ All output switches are turning ON and OFF at		
		-	-	-7.0		$V_{PP} = +40V$ $V_{NN} = -160V$ Turning ON and OT 1 at 50kHz with no load		
I _{NN}	Average V _{NN} supply current	-	-	-5.0	mA	$V_{PP} = +100V$ $V_{NN} = -100V$		
		-	-	-5.0		$V_{PP} = +160V$ $V_{NN} = -40V$		
I _{DD}	Average V _{DD} supply current	-	-	10	mA	$f_{CLK} = 5MHz, V_{DD} = 5.0V$		
I _{DDQ}	Quiescent V _{DD} supply current	-	-	4.0	μA			
I _{SOR}	Data out source current	45	-	-	mA	$V_{OUT} = V_{DD} - 0.7V$		
I _{SINK}	Data out sink current	45	-	-	mA	$V_{OUT} = 0.7V$		
C _{IN}	Large input capacitance	-	-	10	pF			
T _A	Ambient temperature range	0	-	70	οС			

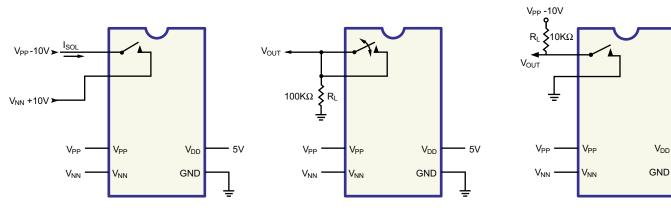
AC Electrical Characteristics (V_{DD} = 5.0V, T_A = 25°C, over recommended operating conditions unless otherwise noted)


Sym	Parameter Parameter		Тур	Max		Conditions
t _{sD}	Set-up time before LE rises	150	-	-	ns	
t _{WLE}	Time width of LE	150	-	-	ns	
t _{DO}	Clock delay time to data out	-	-	150	ns	
t _{wcl}	Time width of CL	150	-	-	ns	
t _{su}	Set-up time data to clock	15	8.0	-	ns	
t _H	Hold time data from clock	35	-	-	ns	
f _{CLK}	Clock frequency	-	-	5.0	MHz	50% duty cycle, f _{DATA} = f _{CLK} /2
t_R, t_F	Clock rise and fall times	-	-	50	ns	
T _{on}	Turn-on time	-	-	5.0	μs	$V_{SIG} = V_{PP}$ -10V, $R_{LOAD} = 10K\Omega$
T _{OFF}	Turn-off time	-	-	5.0	μs	$V_{SIG} = V_{PP}$ -10V, $R_{LOAD} = 10K\Omega$
		-	-	20	V/ns	V _{PP} = +40V, V _{NN} = -160V
dv/dt	Maximum V _{SIG} slew rate	-	-	20		V _{PP} = +125V, V _{NN} = -100V
		-	-	20		V _{PP} = +210V, V _{NN} = -40V
КО	Off isolation	-30	-	-	dB	F = 5MHz, 1KΩ//15pF load
		-58	-	-		F = 5MHz, 50Ω load
K _{CR}	Switch crosstalk	-60	-	-	dB	F = 5MHz, 50Ω load
I _{ID}	Output switch isolation diode current	-	-	300	mA	300ns pulse width, 2% duty cycle
C _{SG(OFF)}	Off capacitance SW to GND	5.0	12	17	pF	0V, f = 1MHz
C _{SG(ON)}	On capacitance SW to GND	25	38	50	pF	0V, f = 1MHz
+V _{SPK}		-	-	200		$V_{PP} = +40V, V_{NN} = -210V, R_{10AD} = 50\Omega$
-V _{SPK}		-	-	200		V _{PP} - 140 V, V _{NN} 210 V, IX _{LOAD} - 3032
+V _{SPK}	Output voltage spike	-	-	200	mV	$V_{PP} = +100V, V_{NN} = -125V, R_{LOAD} = 50\Omega$
-V _{SPK}		-	-	200		FF - NIN LOAD
+V _{SPK}		-	-	200		$V_{PP} = +160V, V_{NN} = -40V, R_{LOAD} = 50\Omega$
-V _{SPK}		-	-	200		TT NIN LOAD

Truth Table

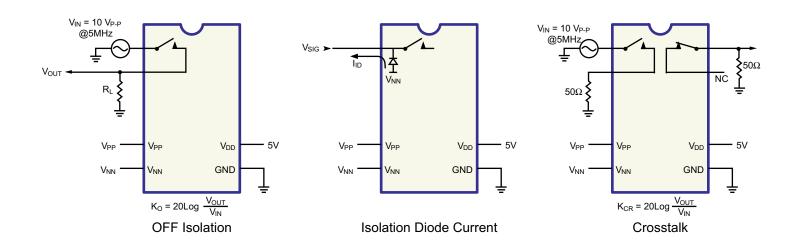
	Da	ata in	8-Bit	Shift F	Regist	ter		LE				Ou	tput Sv	vitch St	ate		
D0	D1	D2	D3	D4	D5	D6	D7	LE	CL	SW0	SW1	SW2	SW3	SW4	SW5	SW6	SW7
L								L	L	OFF							
Н								L	L	ON							
	L							L	L		OFF						
	Н							L	L		ON						
		L						L	L			OFF					
		Н						L	L			ON					
			L					L	L				OFF				
			Н					L	L				ON				
				L				L	L					OFF			
				Н				L	L					ON			
					L			L	L						OFF		
					Н			L	L						ON		
						L		L	L							OFF	
						Н		L	L							ON	
							L	L	L								OFF
							Н	L	L								ON
Х	Χ	Х	Х	Х	Х	Х	Х	Н	L			Н	old Prev	ious Sta	ate		
Х	Χ	Х	X	X	Χ	Х	Х	Х	Н	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF

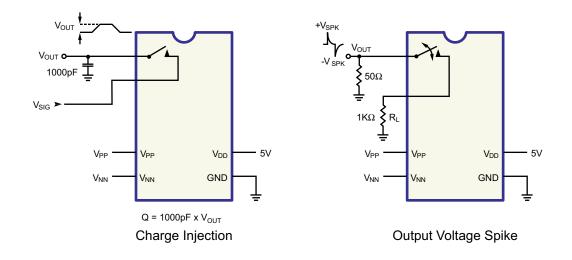
- 1. The eight switches operate independently.
- Serial data is clocked in on the L→H transition CLK.
 The switches go to a state retaining their present condition at the rising edge of LE. When LE is low the shift register data flows through the latch.
- The switches go to a state retaining their present condition at the 1.
 D_{OUT} is high when switch 7 is on.
 Shift register clocking has no effect on the switch states if LE is H.
 The clear input overrides all other inputs.


Logic Timing Waveforms

- 5V

 V_{DD}


Test Circuits



DC Offset ON/OFF

T_{ON}/T_{OFF} Test Circuit

28-Lead (J-Lead) PLCC (PJ) Pin Description

Pin	Function
1	SW3
2	SW3
3	SW2
4	SW2
5	SW1
6	SW1
7	SW0

	_
Pin	Function
8	SW0
9	NC
10	V_{pp}
11	NC
12	V_{NN}
13	GND
14	V _{DD}

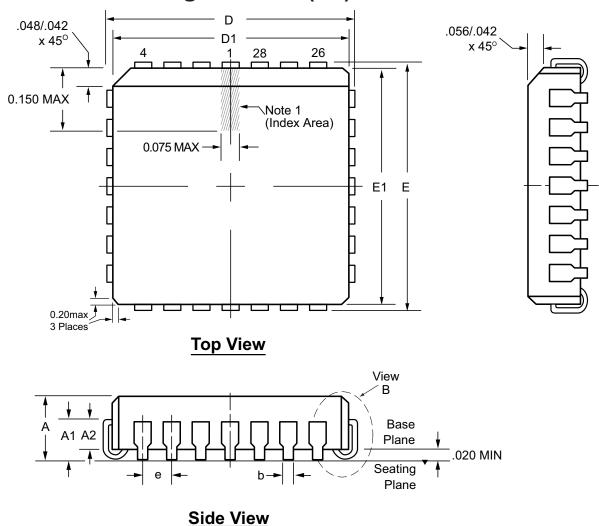
Pin	Function
15	NC
16	D _{IN}
17	CLK
18	ĪĒ
19	CL
20	D _{OUT}
21	SW7

Pin	Function
22	SW7
23	SW6
24	SW6
25	SW5
26	SW5
27	SW4
28	SW4

48-Lead LQFP/TQFP (FG) Pin Description

Pin	Function
1	SW5
2	NC
3	SW4
4	NC
5	SW4
6	NC
7	NC
8	SW3
9	NC
10	SW3
11	NC
12	SW2

•
Function
NC
SW2
NC
SW1
NC
SW1
NC
SW0
NC
SW0
NC
V _{PP}

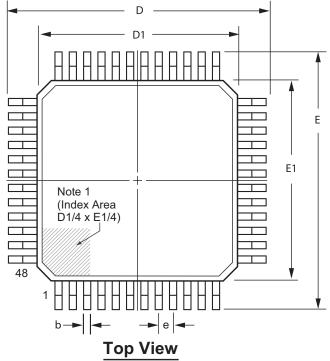

Pin	Function
25	V_{NN}
26	NC
27	NC
28	GND
29	V _{DD}
30	NC
31	NC
32	NC
33	D _{IN}
34	CLK
35	ΙĒ
36	CLR

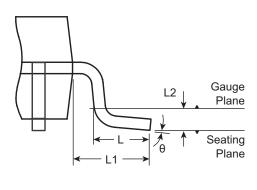
Pin	Function
37	D _{OUT}
38	NC
39	SW7
40	NC
41	SW7
42	NC
43	SW6
44	NC
45	SW6
46	NC
47	SW5
48	NC

Power Up/Down Sequence:

- 1. Power up/down sequence is arbitrary except GND must be powered-up first and powered-down last.
- 2. V_{SIG} must be $V_{NN} \le V_{SIG} \le V_{PP}$ or floating during power up/down transistion.
- 3. Rise and fall times of power supplies $V_{\rm DD}$, $V_{\rm PP}$, and $V_{\rm NN}$ should not be less than 1.0msec.

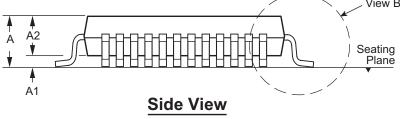
28-Lead PLCC Package Outline (PJ)




Note 1:A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier may be either a mold, or an embedded metal or marked feature.

Symbol		Α	A1	A2	b	D	D1	E	E1	е
Dimension (inches)	MIN	.165	.090	.062	.013	.485	.450	.485	.450	050
	NOM	.172	.105	-	-	.490	.453	.490	.453	.050 BSC
	MAX	.180	.120	.083	.021	.495	.456	.495	.456	000

JEDEC Registration MS-018, Variation AB, Issue A, June, 1993. **Drawings not to scale.**


48-Lead LQFP/TQFP (1.4mm) Package Outline (FG)

View B

View B

Note 1:A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier may be either a mold, or an embedded metal or marked feature.

Symb	ol	Α	A 1	A2	b	D	D1	Е	E1	е	L	L1	L2	θ
Dimension (mm)	MIN	1.40	0.05	1.35	0.17	9.00 BSC	7.00 BSC	9.00 BSC	7.00 BSC	0.50 BSC	0.45	1.00 REF	0.25 BSC	0°
	NOM	-	-	1.40	0.22						0.60			3.5°
	MAX	1.60	0.15	1.45	0.27						0.75			7 °

JEDEC Registration MS-026, Variation BBC, Issue D, Jan. 2001.

Drawings not to scale.

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell its products for use in such applications, unless it receives an adequate "product liability indemnification insurance agreement". **Supertex** does not assume responsibility for use of devices described and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions or inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications, refer to the **Supertex** website: http://www.supertex.com.

