Supertex inc. # High-Voltage Current-Mode PWM Controller ### **Features** - ▶ 10V to 120V Input Voltage Range - Current-mode control - High efficiency - Up to 1.0MHz internal oscillator - Internal start-up circuit - Low internal noise ### **Applications** - DC/DC converters - Distributed power systems - ► ISDN equipment - PBX systems - Modems ### **Ordering Information** | Device | Package Option | |--------|-------------------------------| | Device | 14-Lead Narrow Body SOIC (NG) | | HV9112 | HV9112NG-G | -G indicates package is RoHS compliant ('Green') odf.dzsc.com # **Absolute Maximum Ratings** | Parameter | Value | |---|--------------------------------| | Input voltage, V _{IN} | 80V | | Logic voltage, V _{DD} | 15.5V | | Logic linear input,
FB and sense input voltage | -0.3V to V _{DD} +0.3V | | Storage temperature | -65°C to +150°C | | Power dissipation | 750mW | Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions byond those indicated in the operational sections of the specifications not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ### **General Description** The Supertex HV9112 is a BiCMOS/DMOS single-output, pulse width modulator IC intended for use in high-speed, high-efficiency switch mode power supplies. It provides all the functions necessary to implement a single-switch current mode PWM, in any topology, with a minimum of external parts. Because the HV9112 utilizes Supertex's proprietary BiCMOS/DMOS technology, it requires less than one tenth of the operating power of conventional bipolar PWM ICs, and can operate at more than twice their switching frequency. The dynamic range for regulation is also increased, to approximately 8 times that of similar bipolar parts. It starts directly from any DC input voltage between 10 and 120VDC, requiring no external power resistor. The output stage is push-pull CMOS and thus requires no clamping diodes for protection, even when significant lead length exists between the output and the external MOSFET. The clock frequency is set with a single external resistor. Accessory functions are included to permit fast remote shutdown (latching or nonlatching) and under voltage shutdown. For similar ICs intended to operate directly from up to 450VDC input, please consult the data sheets for the HV9120 and HV9123. For detailed circuit and application information, please refer to application notes AN-H13 and AN-H21 to AN-H24. # **Pin Configuration** 14-Lead Narrow Body SOIC (NG) # **Product Marking** Top Marking HV9112NG YWW LLLLLLL • Bottom Marking Y = Last Digit of Year Sealed WW = Week Sealed L = Lot Number C = Country of Origin* A = Assembler ID* = "Green" Packaging 14-Lead Narrow Body SOIC (NG) | Sym | Parameter | # | Min | Typ | Max | Units | Conditions | |---------------------|--|---|--------------------|----------|------|--------|--| | Reference | e | | | | | ' | ' | | V_{REF} | Output voltage | - | 3.88 | 4.00 | 4.12 | V | $R_L = 10M\Omega$ | | Z _{out} | Output impedence | # | 15 | 30 | 45 | ΚΩ | | | SHORT | Short circuit current | - | - | 125 | 250 | μA | V _{REF} = -V _{IN} | | ΔV_{REF} | Change in V _{REF} with temperature | # | - | 0.25 | - | mV/°C | T _A = -55°C to 125°C | | Oscillator | r | | | | | | | | f _{MAX} | Oscillator frequency | - | 1.0 | 3.0 | - | MHz | $R_{OSC} = 1.0M\Omega$ | | | Initial and an extension of the state | - | 80 | 100 | 120 | 121.1- | R _{osc} = 330KΩ | | f _{osc} | Initial accuracy ⁽¹⁾ | - | 160 | 200 | 240 | KHz | R _{osc} = 150KΩ | | - | Voltage stability | - | - | - | 15 | % | V _{SYNC} = 0.1V | | - | Temperature coefficient | # | - | 170 | - | ppm/°C | T _A = -55°C to 125°C | | PWM | | | | | | | | | D _{MAX} | Maximum duty cycle | - | 49.0 | 49.4 | 49.6 | % | | | | Deadtime | # | - | - | - | ns | | | D _{MIN} | Minimum duty cycle | - | - | - | 0 | % | | | MIN | Maximum pulse width before pulse drops out | # | - | 80 | 125 | ns | | | Current L | imit | | | | • | | | | | Maximum input signal | - | 1.0 | 1.2 | 1.4 | V | V _{FB} = 0V | | t _D | Delay to output | | - | - 80 120 | | ns | $V_{SENSE} = 1.5V,$
$V_{COMP} \le 2.0V$ | | Error Am | plifier | | | | | | | | V_{FB} | Feedback voltage | - | 3.92 | 4.00 | 4.08 | V | V _{FB} shorted to comp | | I _{IN} | Input bias current | - | 25 | | 500 | nA | V _{FB} = 4.0V | | V _{os} | Input offset voltage | - | nulled during trim | | im | - | | | A _{VOL} | Open loop voltage gain | # | 60 | 80 | - | dB | | | GB | Unity gain bandwidth | # | 1.0 1.3 | | - | MHz | | | Z _{out} | Out impedance | # | see Fig. 1 | | Ω | | | | I _{SOURCE} | Output source current | - | -1.4 -2.0 | | - | mA | V _{FB} = 3.4V | | I _{SINK} | Output sink current | - | 0.12 | 0.15 | - | mA | V _{FB} = 4.5V | | PSRR | Power supply rejection | # | see Fig. 2 | | | dB | | | Notes: | | | | | | 1 | | #### Notes: [#] Guaranteed by design. Not subject to production test. (1) Stray capacitance on OSC In pin must be ≤5pF. Electrical Characteristics (cont.) (Unless otherwise specified, V_{DD} = 10V, $+V_{IN}$ = 48V, Discharge = $-V_{IN}$ = 0V, R_{BIAS} = 390K Ω , R_{OSC} = 330K Ω , T_A = 25°C.) | Sym | Parameter | # | Min | Тур | Max | Units | Conditions | | |-----------------------------|----------------------------------|-----------------------------------|-----|-----------------------|------|-------|-------------------------------------|---------------------------------| | Pre-regul | ator/Startup | | | | | | | | | +V _{IN} | Input voltage | - | 9.0 | - | 80 | V | $I_{IN} < 10 \mu A; V_{CC} > 9.4 V$ | | | + _{IIN} | Input leakage current | | - | - | - | 10 | μA | V _{DD} > 9.4V | | V_{TH} | Vdd pre-regulator turn-o voltage | - | 8.0 | 8.7 | 9.4 | V | I _{PREREG} = 10μA | | | V_{LOCK} | Undervoltage lockout | | - | 7.0 | 8.1 | 8.9 | V | | | Supply | | | | | | | | | | I _{DD} | Supply current | | - | - | 0.75 | 1.0 | mA | C _L < 75pF | | I_Q | Quiescent supply curren | t | - | - | 0.55 | - | mA | Shutdown = -V _{IN} | | I _{BIAS} | Nominal Bias current | | - | - | 20 | - | μΑ | | | $V_{\scriptscriptstyle DD}$ | Operating range | - | 9.0 | - | 13.5 | V | | | | Shutdow | n Logic | | | | | | | | | t _{sd} | Shutdown delay | # | - | 50 | 100 | ns | $C_L = 500pF, V_{SENSE} = -V_{IN}$ | | | t_{sw} | Shutdown pulse width | # | 50 | - | - | ns | | | | $t_{_{\mathrm{RW}}}$ | RESET pulse width | # | 50 | - | - | ns | | | | t_{\scriptscriptstyleLW} | Latching pulse width | | | 25 | - | - | ns | Shutdown and reset low | | $V_{_{\rm IL}}$ | Input low voltage | | | - | - | 2.0 | V | | | $V_{_{\mathrm{IH}}}$ | Input high voltage | Input high voltage | | | - | - | V | | | I _{IH} | Input current, input high | Input current, input high voltage | | | 1.0 | 5.0 | μA | $V_{IN} = V_{DD}$ | | I _{IL} | Input current, input low voltage | | | - | -25 | -35 | μA | V _{IN} = 0V | | Output | | | | | | | | | | V_{OH} | Output high voltage | | - | V _{DD} - 0.3 | - | - | V | I _{OUT} = 10mA, | | V_{oL} | Output low voltage | | - | - | - | 0.2 | V | I _{OUT} = -10mA | | | | Pull up | - | - | 15 | 25 | Ω | I = ±10mA | | D | Output resistance | Pull down | - | - | 8.0 | 20 | Ω | - I _{OUT} = ±10mA | | R _{out} | | Pull up | - | - | 20 | 30 | Ω | I _{OUT} = ±10mA, | | | | Pull down | - | - | 10 | 30 | Ω | T _A = -55°C to 125°C | | t _R | Rise time | Rise time | | | 30 | 75 | ns | C _L = 500pF | | t _F | Fall time | | # | - | 20 | 75 | ns | C _L = 500pF | ### Notes: [#] Guaranteed by design. Not subject to production test. ### **Truth Table** | Shutdown | Reset | Output | |-------------------|-----------|-----------------------------| | Н | Н | Normal operation | | Н | $H \to L$ | Normal operation, no change | | L | Н | Off, not latched | | L | L | Off, latched | | $L \rightarrow H$ | L | Off, latched, no change | # **Shutdown Timing Waveforms** # **Functional Block Diagram** # **Typical Performance Curves** Fig. 2 PSRR — Error Amplifier and Reference **Output Switching Frequency** Fig. 4 vs. Oscillator Resistance $R_{DISCHARGE}$ vs. t_{OFF} (9113 only) ### **Test Circuits** NOTE: Set Feedback Voltage so that $V_{COMP} = V_{DIVIDE} \pm 1 mV$ before connecting transformer # **Detailed Description** ### **Preregulator** The preregulator/startup circuit for the HV9112 consists of a high-voltage n-channel depletion-mode DMOS transistor driven by an error amplifier to form a variable current path between the VIN terminal and the VDD terminal. The maximum current (about 20 mA) occurs when $V_{\rm DD}=0$, with current reducing as $V_{\rm DD}$ rises. This path shuts off altogether when $V_{\rm DD}$ rises to somewhere between 7.8 and 9.4V, so that if $V_{\rm DD}$ is held at 10 or 12V by an external source(generally the supply the chip is controlling). No current other than leakage is drawn through the high voltage transistor. This minimizes dissipation. An external capacitor between VDD and VSS is generally required to store energy used by the chip in the time between shutoff of the high voltage path and the VDD supply's output rising enough to take over powering the chip. This capacitor should have a value of 100X or more the effective gate capacitance of the MOSFET being driven, i.e., $$C_{STORAGE} \ge 100 \text{ x (gate charge of FET at } 10\text{V} \div 10\text{V})$$ as well as very good high frequency characteristics. Stacked polyester or ceramic caps work well. Electrolytic capacitors are generally not suitable. A common resistor divider string is used to monitor V_{DD} for both the under voltage lockout circuit and the shutoff circuit of the high voltage FET. Setting the under voltage sense point about 0.6V lower on the string than the FET shutoff point guarantees that the under voltage lockout always releases before the FET shuts off. #### **Bias Circuit** An external bias resistor, connected between the BIAS pin and VSS is required by the HV9112 to set currents in a series of current mirrors used by the analog sections of the chip. The nominal external bias current requirement is 15 to 20µA, which can be set by a 390K Ω to 510K Ω resistor if a 10V V_{DD} is used, or a 510k Ω to 680K Ω resistor if V_{DD} will be 12V. A precision resistor is not required; ± 5% is fine. #### Clock Oscillator The clock oscillator of the HV9112 consists of a ring of CMOS inverters, timing capacitors, a capacitor discharge FET, and, in the 50% maximum duty cycle versions, a frequency dividing flip-flop. A single external resistor between the OSC IN and OSC OUT is required to set the oscillator frequency (see graph). For the 50% maximum duty cycle versions the Discharge pin is internally connected to GND. For the 99% duty cycle version, the Discharge pin can either be connected to VSS directly or connected to VSS through a resistor used to set a deadtime. One major difference exists between the Supertex HV9112 and competitive 9110's. On the Supertex part, the oscillator is shut off when a shutoff command is received. This saves about 150µA of guiescent current, which aids in the construction of power supplies that meet CCITT specification I-430, and in other situations where an absolute minimum of quiescent power dissipation is required. #### Reference The Reference of the HV9112 consists of a stable bandgap reference followed by a buffer amplifier which scales the voltage up to approximately 4.0V. The scaling resistors of the reference buffer amplifier are trimmed during manufacture so that the output of the error amplifier, when connected in a gain of –1 configuration, is as close to 4.0V as possible. This nulls out any input offset of the error amplifier. As a consequence, even though the observed reference voltage of a specific part may not be exactly 4.0V, the feedback voltage required for proper regulation will be. A ≈ 50KΩ resistor is placed internally between the output of the reference buffer amplifier and the circuitry it feeds (reference output pin and non-inverting input to the error amplifier). This allows overriding the internal reference with a low impedance voltage source ≤6.0V. Using an external reference reinstates the input offset voltage of the error amplifier, and its effect of the exact value of feedback voltage required. Because the reference of the HV9112 is a high impedance node, and usually there will be significant electrical noise near it, a bypass capacitor between the reference pin and VSS is strongly recommended. The reference buffer amplifier is intentionally compensated to be stable with a capacitive load of 0.01 to 0.1 μF. ### **Error Amplifier** The error amplifier in the HV9112 is a true low-power differential input operational amplifier intended for around the amplifier compensation. It is of mixed CMOS-bipolar construction: A PMOS input stage is used so the common mode range includes ground and the input impedance is very high. This is followed by bipolar gain stages which provide high gain without the electrical noise of all-MOS amplifiers. The amplifier is unity gain stable. ### **Current Sense Comparators** The HV9112 uses a true dual comparator system with independent comparators for modulation and current limiting. This allows the designer greater latitude in compensation design, as there are no clamps (except ESD protection) on the compensation pin. Like the error amplifier, the comparators are of low-noise BiCMOS construction. #### Remote Shutdown The shutdown and reset pins of the 9110 can be used to perform either latching or non-latching shutdown of a converter as required. These pins have internal current source pull-ups so they can be driven from open drain logic. When not used they should be left open, or connected to VDD. ### **Output Buffer** The output buffer of the HV9112 is of standard CMOS construction (P-channel pull-up, N-channel pull-down). Thus the body-drain diodes of the output stage can be used for spike clipping if necessary, and external Schottky diode clamping of the output is not required. # 14-Lead SOIC (Narrow Body) Package Outline (NG) 8.65x3.90mm body, 1.27mm pitch **Note 1:**This chamfer feature is optional. If it is not present, then a Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier may be either a mold, or an embedded metal or marked feature. | Symb | ol | Α | A1 | A2 | b | D | Е | E1 | е | h | L | L1 | L2 | θ | θ1 | |----------------|-----|------|------|------|------|------|------|------|-------------|---------|------|-------------|-------------|----|-----| | Dimension (mm) | MIN | 1.35 | 0.10 | 1.25 | 0.31 | 8.55 | 5.80 | 3.80 | 1.27
BSC | 0.25 0. | 0.40 | 1.04
REF | 0.25
BSC | 0° | 5° | | | NOM | - | - | - | - | 8.65 | 6.00 | 3.90 | | - | - | | | - | - | | | MAX | 1.75 | 0.25 | 1.65 | 0.51 | 8.75 | 6.20 | 4.00 | ВОО | 0.50 | 1.27 | | 500 | 8° | 15° | JEDEC Registration MS-012, Variation AB, Issue E, Sept. 2005. **Drawinngs not to scale.** (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.) **Supertex inc.** does not recommend the use of its products in life support applications, and will not knowingly sell its products for use in such applications, unless it receives an adequate "product liability indemnification insurance agreement". **Supertex** does not assume responsibility for use of devices described and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions or inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications, refer to the **Supertex** website: http://www.supertex.com.