

FN6342.1 Data Sheet December 7, 2006

## MP3/USB 2.0 High Speed Switch with Negative Signal Handling

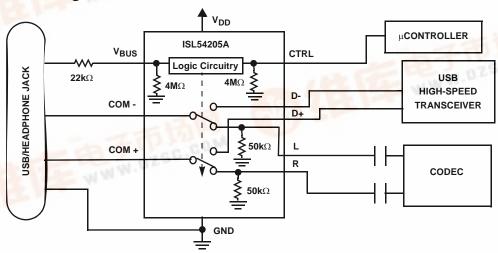
The Intersil ISL54205A dual SPDT (Single Pole/Double Throw) switches combine low distortion audio and accurate USB 2.0 high speed data (480Mbps) signal switching in the same low voltage device. When operated with a 2.7V to 3.6V single supply these analog switches allow audio signal swings below-ground, allowing the use of a common USB and audio headphone connector in Personal Media Players and other portable battery powered devices.

The ISL54205A incorporates circuitry for detection of the USB V<sub>BUS</sub> voltage, which is used to switch between the audio and USB signal sources in the portable device. The part has a control pin to open all the switches and put the part in a low power down state.

The ISL54205A is available in a small 10 Ld 2.1mm x 1.6mm ultra-thin μTQFN package and a 10Ld 3mm x 3mm TDFN package. It operates over a temperature range of -40 to +85°C.

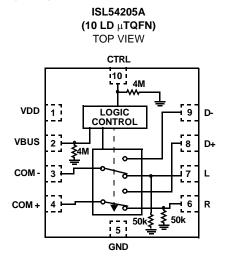
#### Related Literature

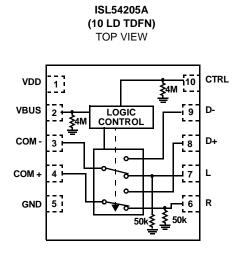
- Application Note AN1280 "ISL54205EVAL1Z Evaluation Board User's Manual.
- · Technical Brief TB363 "Guidelines for Handling and Processing Moisture Sensitive Surface Mount Devices (SMDs)"
- Application Note AN557 "Recommended Test Procedures for Analog Switches"


#### **Features**

- High Speed (480Mbps) Signaling Capability per USB 2.0
- Low Distortion Negative Signal Capability
- Detection of V<sub>BUS</sub> Voltage on USB Cable
- Control Pin to Open all Switches and Enter Low Power State
- · Low Distortion Headphone Audio Signals THD+N at 20mW into 32Ω Load . . . . . . . < 0.1%</li> Cross-talk (20Hz to 20kHz) . . . . . . . . -110dB Single Supply Operation (V<sub>DD</sub>) . . . . . . . . 2.7V to 3.6V -3dB Bandwidth USB Switch . . . . . . . . . . . . 630MHz
- Available in μTQFN and TDFN Packages
- Pb-Free Plus Anneal (RoHS Compliant)
- Compliant with USB 2.0 Short Circuit Requirements Without Additional External Components

## Applications


- MP3 and Other Personal Media Players
- WWW.DZSC.COM Cellular/Mobile Phones
- PDA's
- Audio/USB Switching


## Application Block Diagram





## Pinouts (Note 1)





#### NOTE:

1. ISL54205 Switches shown for  $V_{BUS}$  = Logic "0" and CTRL = Logic "1".

## Truth Table

| ISL54205A                         |   |     |     |  |  |  |
|-----------------------------------|---|-----|-----|--|--|--|
| V <sub>BUS</sub> CTRL L, R D+, D- |   |     |     |  |  |  |
| 0                                 | 0 | OFF | OFF |  |  |  |
| 0                                 | 1 | ON  | OFF |  |  |  |
| 1                                 | Х | OFF | ON  |  |  |  |

CTRL: Logic "0" when  $\leq$  0.5V, Logic "1" when  $\geq$  1.4V  $V_{BUS}$ : Logic "0" when  $\leq$   $V_{DD}$  + 0.2V or Floating, Logic "1" when  $\geq$   $V_{DD}$  + 0.8V

## **Ordering Information**

| PART NUMBER               | PART<br>MARKING | TEMP.<br>RANGE<br>(°C) | PACKAGE                                   | PKG.<br>DWG. # |
|---------------------------|-----------------|------------------------|-------------------------------------------|----------------|
| ISL54205AIRUZ-T<br>(Note) | FT              | -40 to +85             | 10 Ld μTQFN<br>Tape and Reel<br>(Pb-free) | L10.2.1x1.6A   |
| ISL54205AIRZ-T<br>(Note)  | 205Z            | -40 to +85             | 10 Ld TDFN<br>Tape and Reel<br>(Pb-free)  | L10.3x3A       |
| ISL54205AIRZ<br>(Note)    | 205Z            | -40 to +85             | 10 Ld TDFN<br>(Pb-free)                   | L10.3x3A       |
| ISL54205EVAL1Z            |                 | -40 to +85             | Evaluation Boar                           | ·d             |

NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate or NiPdAu termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

## Pin Descriptions

| ISL54205A |      |                                      |  |  |
|-----------|------|--------------------------------------|--|--|
| PIN NO.   | NAME | FUNCTION                             |  |  |
| 1         | VDD  | Power Supply                         |  |  |
| 2         | VBUS | Digital Control Input                |  |  |
| 3         | COM- | Voice and Data Common Pin            |  |  |
| 4         | COM+ | Voice and Data Common Pin            |  |  |
| 5         | GND  | Ground Connection                    |  |  |
| 6         | R    | Audio Right Input                    |  |  |
| 7         | L    | Audio Left Input                     |  |  |
| 8         | D+   | USB Differential Input               |  |  |
| 9         | D-   | USB Differential Input               |  |  |
| 10        | CTRL | Digital Control Input (Audio Enable) |  |  |

\_\_\_\_

#### ISL54205A

## **Absolute Maximum Ratings**

| V <sub>DD</sub> to GND                                  |
|---------------------------------------------------------|
| D+, D-, L, R (Note 2) 2V to ((V <sub>DD</sub> ) + 0.3V) |
| V <sub>BUS</sub> (Note 2)2V to 5.5V                     |
| CTRL (Note 2)0.3 to ((V <sub>DD</sub> ) + 0.3V)         |
| Output Voltages                                         |
| COM-, COM+ (Note 2)2V to ((V <sub>DD</sub> ) + 0.3V)    |
| Continuous Current (Audio Switches) ±150mA              |
| Peak Current (Audio Switches)                           |
| (Pulsed 1ms, 10% Duty Cycle, Max) ±300mA                |
| Continuous Current (USB Switches) ±40mA                 |
| Peak Current (USB Switches)                             |
| (Pulsed 1ms, 10% Duty Cycle, Max) ±100mA                |
| ESD Rating:                                             |
| HBM>7kV                                                 |
| MM>450V                                                 |
| CDM >2kV                                                |

#### **Thermal Information**

| Thermal Resistance (Typical, Note 3)           | $\theta_{JA}$ (°C/W) |
|------------------------------------------------|----------------------|
| 10 Ld μTQFN Package                            | 130                  |
| 10 Ld 3x3 TDFN Package                         |                      |
|                                                |                      |
| Maximum Junction Temperature (Plastic Package) | +150°C               |
| Maximum Storage Temperature Range65°           | °C to +150°C         |
|                                                |                      |

## **Operating Conditions**

Temperature Range ISL54205AIRUZ and ISL54205AIRZ .....-40°C to +85°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

#### NOTES:

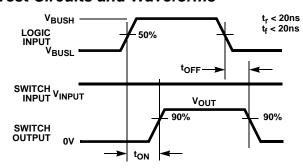
- 2. Signals on D+, D-, L, R, COM-, COM+, CTRL, V<sub>BUS</sub> exceeding V<sub>DD</sub> or GND by specified amount are clamped. Limit current to maximum current ratings.
- 3. θ<sub>JA</sub> is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.

Electrical Specifications - 2.7V to 3.6V Supply Test Conditions:  $V_{DD} = +3.0V$ , GND = 0V,  $V_{BUSH} = 3.8V$ ,  $V_{BUSL} = 3.2V$ ,  $V_{CTRLH} = 1.4V$ ,  $V_{CTRLL} = 0.5V$ , (Notes 4, 6), unless otherwise specified.

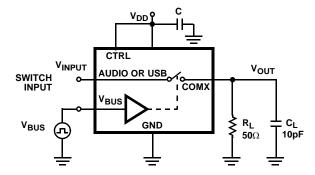
| PARAMETER                                                       | TEST CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                     | TEMP<br>(°C) | MIN<br>(Note 5) | TYP  | MAX<br>(Note 5) | UNITS |
|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|------|-----------------|-------|
| ANALOG SWITCH CHARACTERIS                                       | STICS                                                                                                                                                                                                                                                                                                                                                                                                               |              |                 |      |                 |       |
| Audio Switches (L, R)                                           |                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                 |      |                 |       |
| Analog Signal Range, V <sub>ANALOG</sub>                        | $V_{DD} = 3.0V$ , $V_{BUS} = float$ , CTRL = 1.4V                                                                                                                                                                                                                                                                                                                                                                   | Full         | -1.5            | -    | 1.5             | V     |
| ON Resistance, r <sub>ON</sub>                                  | $V_{DD} = 3.0V$ , $V_{BUS} = $ float, CTRL = 1.4V, $I_{COMx} = 100$ mA, $V_{L}$ or $V_{R} = -0.85$ V to 0.85V, (See Figure 3)                                                                                                                                                                                                                                                                                       |              | -               | 2.65 | 4               | Ω     |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                     |              | -               | -    | 5.5             | Ω     |
| r <sub>ON</sub> Matching Between Channels,                      | $V_{DD} = 3.0V$ , $V_{BUS} = float$ , $CTRL = 1.4V$ , $I_{COMx} = 100$ mA,                                                                                                                                                                                                                                                                                                                                          | +25          | -               | 0.02 | 0.13            | Ω     |
| $\Delta r_{ON}$                                                 | $V_L$ or $V_R$ = Voltage at max $r_{ON}$ over signal range of -0.85V to 0.85V, (Note 9)                                                                                                                                                                                                                                                                                                                             | Full         | -               | -    | 0.16            | Ω     |
| r <sub>ON</sub> Flatness, r <sub>FLAT(ON)</sub>                 | $V_{DD} = 3.0V$ , $V_{BUS} = \text{float}$ , $CTRL = 1.4V$ , $I_{COMx} = 100\text{mA}$ , $V_{L}$ or $V_{R} = -0.85V$ to 0.85V, (Note 7)                                                                                                                                                                                                                                                                             |              | -               | 0.03 | 0.05            | Ω     |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                     |              | -               | -    | 0.07            | Ω     |
| Discharge Pull-Down Resistance, R <sub>L</sub> , R <sub>R</sub> | $\begin{split} &V_{DD}=3.6\text{V}, \ V_{BUS}=\text{float}, \ CTRL=1.4\text{V}, \ V_{COM}\text{-} \text{ or } \\ &V_{COM+}=\text{-}0.85\text{V}, \ 0.85\text{V}, \ V_L \text{ or } V_R=\text{-}0.85\text{V}, \ 0.85\text{V}, \\ &V_{D+} \text{ and } V_{D-}=\text{floating}, \ \text{Measure current through the } \\ &\text{discharge pull-down resistor and calculate resistance } \\ &\text{value}. \end{split}$ |              | -               | 50   | -               | kΩ    |
| USB Switches (D+, D-)                                           |                                                                                                                                                                                                                                                                                                                                                                                                                     |              | 1               |      | 1               | 1     |
| Analog Signal Range, V <sub>ANALOG</sub>                        | V <sub>DD</sub> = 3.0V, V <sub>BUS</sub> = 5.0V, CTRL = 0V or 3V                                                                                                                                                                                                                                                                                                                                                    | Full         | 0               | -    | $V_{DD}$        | V     |
| ON Resistance, r <sub>ON</sub>                                  | V <sub>DD</sub> = 3.6V, V <sub>BUS</sub> = 4.4V, CTRL = 0V or 3.6V,                                                                                                                                                                                                                                                                                                                                                 |              | -               | 4.6  | 5               | Ω     |
|                                                                 | $I_{COMx} = 40mA$ , $V_{D+}$ or $V_{D-} = 0V$ to $400mV$ (See Figure 4)                                                                                                                                                                                                                                                                                                                                             | Full         | -               | -    | 6.5             | Ω     |
| r <sub>ON</sub> Matching Between Channels,                      | V <sub>DD</sub> = 3.6V, V <sub>BUS</sub> = 4.4V, CTRL = 0V or 3.6V,                                                                                                                                                                                                                                                                                                                                                 | +25          | -               | 0.06 | 0.5             | Ω     |
| Δron                                                            | $I_{COMx}$ = 40mA, $V_{D+}$ or $V_{D-}$ = Voltage at max $r_{ON}$ , (Note 8)                                                                                                                                                                                                                                                                                                                                        | Full         | -               | -    | 0.55            | Ω     |

Electrical Specifications - 2.7V to 3.6V Supply Test Conditions:  $V_{DD} = +3.0V$ , GND = 0V,  $V_{BUSH} = 3.8V$ ,  $V_{BUSL} = 3.2V$ ,  $V_{CTRLH} = 1.4V$ ,  $V_{CTRLL} = 0.5V$ , (Notes 4, 6), unless otherwise specified. (Continued)

| TEST CONDITIONS                                                                                                                                                                                                                | (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MIN<br>(Note 5)       | TYP                                                                            | MAX<br>(Note 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UNITS                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| V <sub>DD</sub> = 3.6V, V <sub>BUS</sub> = 4.4V, CTRL = 0V or 3.6V,                                                                                                                                                            | +25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                     | 0.4                                                                            | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ω                                                |
| $I_{COMx} = 40 \text{mA}, V_{D+} \text{ or } V_{D-} = 0 \text{V to } 400 \text{mV}, \text{ (Note 7)}$                                                                                                                          | Full                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                     | -                                                                              | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ω                                                |
| V <sub>DD</sub> = 3.6V, V <sub>BUS</sub> = 0V, CTRL = 3.6V, V <sub>COM</sub> - or                                                                                                                                              | +25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -10                   | -                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nA                                               |
| $V_{COM+}$ = 0.5V, 0V, $V_{D+}$ or $V_{D-}$ = 0V, 0.5V, $V_{L}$ and $V_{R}$ = float                                                                                                                                            | Full                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -70                   | -                                                                              | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nA                                               |
| $V_{DD} = 3.3V$ , $V_{BUS} = 5.25V$ , CTRL = 0V or 3.6V, $V_{D+}$ or                                                                                                                                                           | +25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -10                   | 2                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nA                                               |
| D- Liet, COM-1, COM+, Canark mean                                                                                                                                                                                              | Full                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -75                   | -                                                                              | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nA                                               |
|                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                |
| $V_{DD} = 2.7V$ , $R_L = 50\Omega$ , $C_L = 10$ pF, (See Figure 1)                                                                                                                                                             | +25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                     | 67                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns                                               |
| $V_{DD} = 2.7V$ , $R_L = 50\Omega$ , $C_L = 10$ pF, (See Figure 1)                                                                                                                                                             | +25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                     | 48                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns                                               |
| $V_{DD}$ = 2.7V, $R_L$ = 50 $\Omega$ , $C_L$ = 10pF, (See Figure 2)                                                                                                                                                            | +25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                     | 18                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns                                               |
| $\begin{split} &V_{DD}=3.0\text{V, }V_{BUS}=5.0\text{V, }CTRL=0\text{V or }3\text{V, }R_L=45\Omega,\\ &C_L=10\text{pF, }t_R=t_F=720\text{ps at }480\text{Mbps,}\\ &(\text{Duty Cycle}=50\%)\text{ (See Figure 7)} \end{split}$ | +25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                     | 50                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ps                                               |
| $V_{DD} = 3.0V$ , $V_{BUS} = 5.0V$ , CTRL = 0V or 3V, $R_L = 50\Omega$ , $C_L = 10$ pF, $t_R = t_F = 750$ ps at 480Mbps                                                                                                        | +25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                     | 210                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ps                                               |
| $V_{DD}$ = 3.0V, $V_{BUS}$ = 5.0V, CTRL = 0V or 3V, $R_L$ = 45 $\Omega$ , $C_L$ = 10pF, (See Figure 7)                                                                                                                         | +25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                     | 250                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ps                                               |
| el), $V_{DD}=3.0V$ , $V_{BUS}=$ float, CTRL = 3.0V, $R_L=32\Omega$ , f = 20Hz to 20kHz, $V_R$ or $V_L=0.707V_{RMS}$ (2V <sub>P-P</sub> ), (See Figure 6)                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                     | -110                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | dB                                               |
| f = 20Hz to 20kHz, $V_{DD}$ = 3.0V, $V_{BUS}$ = float, CTRL = 3.0V, $V_{L}$ or $V_{R}$ = 0.707 $V_{RMS}$ (2 $V_{P-P}$ ), $R_{L}$ = 32 $\Omega$                                                                                 | +25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                     | 0.06                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | %                                                |
| Signal = 0dBm, $0.2V_{DC}$ offset, $R_L = 50\Omega$ , $C_L = 5pF$                                                                                                                                                              | +25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                     | 630                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MHz                                              |
| $ f = 1 \text{MHz}, \ V_{DD} = 3.0 \text{V}, \ V_{BUS} = \text{float}, \ \text{CTRL} = 3.0 \text{V}, \\ V_{D-} \text{ or } V_{D+} = V_{COMx} = 0 \text{V}, \ \text{(See Figure 5)} $                                           | +25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                     | 6                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pF                                               |
| $ f = 1 \text{MHz}, \ V_{DD} = 3.0 \text{V}, \ V_{BUS} = 5.0 \text{V}, \ \text{CTRL} = 0 \text{V or } 3 \text{V}, \\ V_L \ \text{or } V_R = V_{COMx} = 0 \text{V}, \ \text{(See Figure 5)} $                                   | +25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                     | 9                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pF                                               |
| f = 1MHz, $V_{DD}$ = 3.0V, $V_{BUS}$ = 5.0V, CTRL = 0V or 3V, $V_{D-}$ or $V_{D+}$ = $V_{COMx}$ = 0V, (See Figure 5)                                                                                                           | +25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                     | 10                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pF                                               |
| ics                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                     |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  |
|                                                                                                                                                                                                                                | Full                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.7                   |                                                                                | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V                                                |
| V <sub>DD</sub> = 3.6V, V <sub>BUS</sub> = float or 5.25V, CTRL = 1.4V                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                     | 6                                                                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μА                                               |
|                                                                                                                                                                                                                                | Full                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                     | -                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | μА                                               |
| V <sub>DD</sub> = 3.6V, V <sub>BUS</sub> = 0V or float, CTRL = 0V or float                                                                                                                                                     | +25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                     | 1                                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nA                                               |
| positive Supply Current, $I_{DD}$ ow Power State) $V_{DD} = 3.6V$ , $V_{BUS} = 0V$ or float, CTRL = 0V or float                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                     | -                                                                              | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nA                                               |
| SS                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                |
| V <sub>DD</sub> = 2.7V to 3.6V                                                                                                                                                                                                 | Full                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                     | -                                                                              | V <sub>DD</sub> + 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V                                                |
| V <sub>DD</sub> = 2.7V to 3.6V                                                                                                                                                                                                 | Full                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V <sub>DD</sub> + 0.8 | -                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V                                                |
| V <sub>DD</sub> = 2.7V to 3.6V                                                                                                                                                                                                 | Full                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                     | -                                                                              | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V                                                |
|                                                                                                                                                                                                                                | Full                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.4                   | -                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V                                                |
|                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 20                                                                             | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nA                                               |
|                                                                                                                                                                                                                                | $\begin{split} &\text{ICOMx} = 40\text{mÅ}, \ V_{\text{D+}} \text{ or } V_{\text{D-}} = 0\text{V to } 400\text{mV}, \ (\text{Note } 7) \\ &V_{\text{DD}} = 3.6\text{V}, \ V_{\text{BUS}} = 0\text{V}, \ \text{CTRL} = 3.6\text{V}, \ V_{\text{COM-}} \text{ or } \\ &V_{\text{COM+}} = 0.5\text{V}, 0\text{V}, \ V_{\text{D+}} \text{ or } V_{\text{D-}} = 0\text{V}, 0.5\text{V}, \ V_{\text{L}} \text{ and } \\ &V_{\text{R}} = \text{float} \\ &V_{\text{DD}} = 3.3\text{V}, \ V_{\text{BUS}} = 5.25\text{V}, \ \text{CTRL} = 0\text{V or } 3.6\text{V}, \ V_{\text{D+}} \text{ or } \\ &V_{\text{DD}} = 2.7\text{V}, \ R_{\text{L}} = 50\Omega, \ C_{\text{L}} = 10\text{pF}, \ (\text{See Figure } 1) \\ &V_{\text{DD}} = 2.7\text{V}, \ R_{\text{L}} = 50\Omega, \ C_{\text{L}} = 10\text{pF}, \ (\text{See Figure } 2) \\ &V_{\text{DD}} = 2.7\text{V}, \ R_{\text{L}} = 50\Omega, \ C_{\text{L}} = 10\text{pF}, \ (\text{See Figure } 2) \\ &V_{\text{DD}} = 3.0\text{V}, \ V_{\text{BUS}} = 5.0\text{V}, \ \text{CTRL} = 0\text{V or } 3\text{V}, \ R_{\text{L}} = 45\Omega, \\ &C_{\text{L}} = 10\text{pF}, \ t_{\text{R}} = t_{\text{F}} = 720\text{ps at } 480\text{Mbps}, \\ &(\text{Duty Cycle} = 50\%) \ (\text{See Figure } 7) \\ &V_{\text{DD}} = 3.0\text{V}, \ V_{\text{BUS}} = 5.0\text{V}, \ \text{CTRL} = 0\text{V or } 3\text{V}, \ R_{\text{L}} = 50\Omega, \\ &C_{\text{L}} = 10\text{pF}, \ t_{\text{R}} = t_{\text{F}} = 750\text{ps at } 480\text{Mbps} \\ &V_{\text{DD}} = 3.0\text{V}, \ V_{\text{BUS}} = 5.0\text{V}, \ \text{CTRL} = 0\text{V or } 3\text{V}, \ R_{\text{L}} = 45\Omega, \\ &C_{\text{L}} = 10\text{pF}, \ (\text{See Figure } 7) \\ &V_{\text{DD}} = 3.0\text{V}, \ V_{\text{BUS}} = 5.0\text{V}, \ \text{CTRL} = 0\text{V or } 3\text{V}, \ R_{\text{L}} = 45\Omega, \\ &C_{\text{L}} = 10\text{pF}, \ (\text{See Figure } 7) \\ &V_{\text{DD}} = 3.0\text{V}, \ V_{\text{BUS}} = \text{float}, \ \text{CTRL} = 3.0\text{V}, \ R_{\text{L}} = 32\Omega, \\ &f = 20\text{Hz} \text{ to } 20\text{kHz}, \ V_{\text{R}} \text{ or } V_{\text{L}} = 0.707\text{V}_{\text{RMS}} \ (2\text{Vp}_{\text{-P}}), \\ &(\text{See Figure } 6) \\ &f = 20\text{Hz} \text{ to } 20\text{kHz}, \ V_{\text{DD}} = 3.0\text{V}, \ V_{\text{BUS}} = \text{float}, \\ &CTRL = 3.0\text{V}, \ V_{\text{L}} \text{ or } V_{\text{P}} = 0.707\text{V}_{\text{RMS}} \ (2\text{Vp}_{\text{-P}}), \ R_{\text{L}} = 32\Omega, \\ &\text{Signal} = 0\text{dBm}, \ 0.2\text{V}_{\text{D}} \text{com} = 0.707\text{V}_{\text{RMS}} \ (2\text{Vp}_{\text{-P}}), \ R_{\text{L}} = 32\Omega, \\ &\text{Signal} = 0\text{dBm}, \ 0.2\text{V}_{\text{D}} = 3.0\text{V}, \ V_{\text{BUS}} = \text{float}, \ \text{CTRL} = 3.0\text{V}, \\ &V_{\text{D}} = 0.70\text{Mx} = 0\text{V}, \ (\text{See Figure } 5) \\ &\text{fe 1MHz}, \ V_{\text{DD}} = 3.0\text{V}, \ V_{\text{BUS}} = 5.0\text{V}, \ \text{CTRL}$ | COMX                  | COMX = 40mÅ, VD <sub>1</sub> or VD <sub>2</sub> = 0V to 400mV, (Note 7)   Full | $ \begin{vmatrix} \text{COM}_{X} = 40\text{mÅ}, \ V_{D+} \text{ or } V_{D-} = 0\text{V to } 400\text{mV}, \ (\text{Note } 7) \\ V_{DD} = 3.6\text{V}, \ V_{BUS} = 0\text{V}, \text{CTRL} = 3.6\text{V}, \ V_{COM-} \text{ or } \\ V_{COM+} = 0.5\text{V}, \ 0\text{V}, \ V_{D+} \text{ or } V_{D-} = 0\text{V}, \ 0.5\text{V}, \ V_{L} \text{ and } \\ V_{R} = \text{float} \\ V_{DD} = 3.3\text{V}, \ V_{BUS} = 5.25\text{V}, \ \text{CTRL} = 0\text{V or } 3.6\text{V}, \ V_{D+} \text{ or } \\ V_{D-} = 2.0\text{V}, \ V_{COM-} \cdot V_{COM+}, \ V_{L} \text{ and } V_{R} = \text{float} \\ V_{DD} = 2.7\text{V}, \ R_{L} = 50\Omega, \ C_{L} = 10\text{pF}, \ (\text{See Figure } 1) \\ V_{DD} = 2.7\text{V}, \ R_{L} = 50\Omega, \ C_{L} = 10\text{pF}, \ (\text{See Figure } 1) \\ V_{DD} = 2.7\text{V}, \ R_{L} = 50\Omega, \ C_{L} = 10\text{pF}, \ (\text{See Figure } 2) \\ V_{DD} = 2.7\text{V}, \ R_{L} = 50\Omega, \ C_{L} = 10\text{pF}, \ (\text{See Figure } 2) \\ V_{DD} = 3.0\text{V}, \ V_{BUS} = 5.0\text{V}, \ CTRL = 0\text{V or } 3\text{V}, \ R_{L} = 45\Omega, \ C_{L} = 10\text{pF}, \ R_{R} = \frac{1}{2} = \frac{1}{2} \frac{1}{2$ | ICOMX = 40mÅ, VD+ or VD- = 0V to 400mV, (Note 7) |


Electrical Specifications - 2.7V to 3.6V Supply Test Conditions:  $V_{DD} = +3.0V$ , GND = 0V,  $V_{BUSH} = 3.8V$ ,  $V_{BUSL} = 3.2V$ , V<sub>CTRLH</sub> = 1.4V, V<sub>CTRLL</sub> = 0.5V, (Notes 4, 6), unless otherwise specified. (Continued)

| PARAMETER                                              | TEST CONDITIONS                                          | TEMP<br>(°C) | MIN<br>(Note 5) | TYP | MAX<br>(Note 5) | UNITS |
|--------------------------------------------------------|----------------------------------------------------------|--------------|-----------------|-----|-----------------|-------|
| Input Current, I <sub>BUSH</sub>                       | $V_{DD} = 3.6V$ , $V_{BUS} = 5.25V$ , CTRL = 0V or float | Full         | -2              | 1.1 | 2               | μΑ    |
| Input Current, I <sub>CTRLH</sub>                      | $V_{DD} = 3.6V$ , $V_{BUS} = 0V$ or float, CTRL = 3.6V   | Full         | -2              | 1.1 | -2              | μΑ    |
| V <sub>BUS</sub> Pull-Down Resistor, R <sub>VBUS</sub> | $V_{DD} = 3.6V$ , $V_{BUS} = 5.25V$ , CTRL = 0V or float | Full         | -               | 4   | -               | MΩ    |
| CTRL Pull-Down Resistor, R <sub>CTRL</sub>             | $V_{DD} = 3.6V$ , $V_{BUS} = 0V$ or float, CTRL = 3.6V   | Full         | -               | 4   | -               | MΩ    |


#### NOTES:

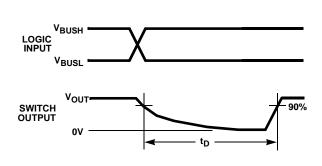
- 4. V<sub>LOGIC</sub> = Input voltage to perform proper function.
- 5. The algebraic convention, whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- 6. Parts are 100% tested at +25°C. Limits across the full temperature range are guaranteed by design and correlation.
- 7. Flatness is defined as the difference between maximum and minimum value of on-resistance over the specified analog signal range.
- 8. Guaranteed by design.
- 9. r<sub>ON</sub> matching between channels is calculated by subtracting the channel with the highest max r<sub>ON</sub> value from the channel with lowest max r<sub>ON</sub> value, between L and R or between D+ and D-.

## Test Circuits and Waveforms



Logic input waveform is inverted for switches that have the opposite logic sense.




Repeat test for all switches. C<sub>L</sub> includes fixture and stray capacitance.  $V_{OUT} = V_{(INPUT)} \frac{L}{R_L + r_{(ON)}}$ 

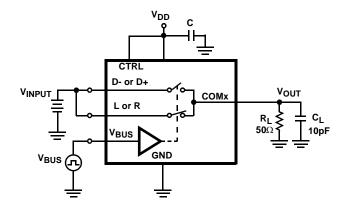
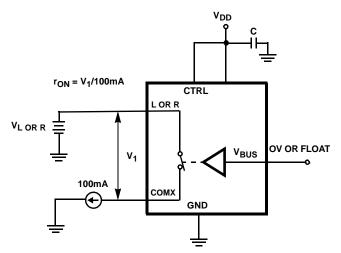

FIGURE 1A. MEASUREMENT POINTS

FIGURE 1B. TEST CIRCUIT

FIGURE 1. SWITCHING TIMES

## Test Circuits and Waveforms (Continued)






Repeat test for all switches. C<sub>L</sub> includes fixture and stray capacitance.

FIGURE 2A. MEASUREMENT POINTS

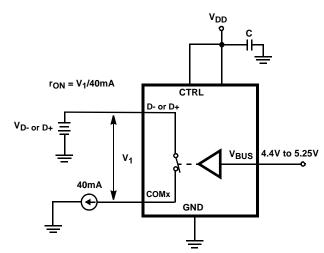
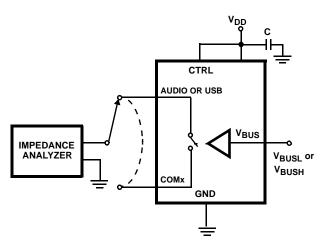

FIGURE 2B. TEST CIRCUIT

FIGURE 2. BREAK-BEFORE-MAKE TIME



Repeat test for all switches.

FIGURE 3. AUDIO  $r_{\mbox{\scriptsize ON}}$  TEST CIRCUIT




Repeat test for all switches.

FIGURE 4. USB  $r_{ON}$  TEST CIRCUIT

Engag

## Test Circuits and Waveforms (Continued)



Repeat test for all switches.

FIGURE 5. CAPACITANCE TEST CIRCUIT

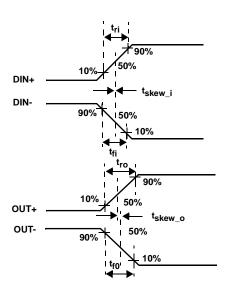
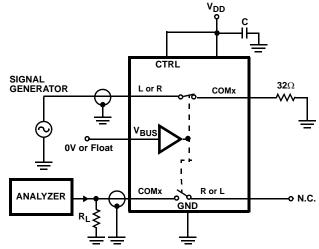
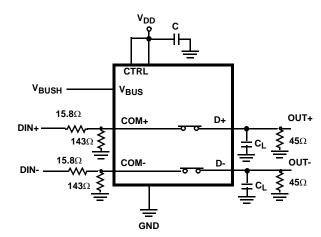
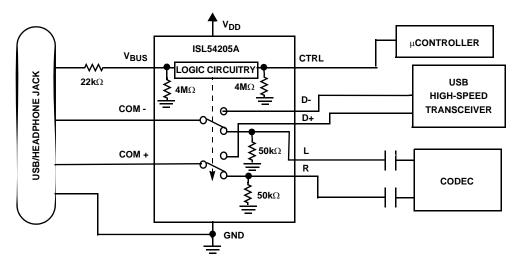





FIGURE 7A. MEASUREMENT POINTS



Signal direction through switch is reversed, worst case values are recorded. Repeat test for all switches.

FIGURE 6. AUDIO CROSSTALK TEST CIRCUIT




|tro - tri| Delay Due to Switch for Rising Input and Rising Output Signals. |tfo - tfi| Delay Due to Switch for Falling Input and Falling Output Signals. |tskew\_0| Change in Skew through the Switch for Output Signals. |tskew\_i| Change in Skew through the Switch for Input Signals.

FIGURE 7B. TEST CIRCUIT

FIGURE 7. SKEW TEST

## Application Block Diagram



## **Detailed Description**

The ISL54205A device is a dual single pole/double throw (SPDT) analog switch device that operates from a single DC power supply in the range of 2.7V to 3.6V. It was designed to function as a dual 2 to 1 multiplexer to select between USB differential data signals and audio L and R stereo signals. It comes in tiny  $\mu TQFN$  and TDFN packages for use in MP3 players, PDAs, cell phones, and other personal media players.

The part consists of two  $3\Omega$  audio switches and two  $5\Omega$  USB switches. The audio switches can accept signals that swing below ground. They were designed to pass audio left and right stereo signals, that are ground referenced, with minimal distortion. The USB switches were designed to pass high-speed USB differential data signals with minimal edge and phase distortion.

The ISL54205A was specifically designed for MP3 players, cell phones and other personal media player applications that need to combine the audio headphone jack and the USB data connector into a single shared connector, thereby saving space and component cost. A typical application block diagram of this functionality is shown above.

The ISL54205A incorporates circuitry for the detection of the USB  $V_{BUS}$  voltage, which is used to switch between the audio CODEC drivers and USB transceiver of the MP3 player or cell phone. The ISL54205A contains a logic control pin (CTRL) that when driven Low while  $V_{BUS}$  is Low, opens all switches and puts the part into a low power state, drawing typically 1nA of  $I_{DD}$  current.

A detailed description of the two types of switches is provided in the sections below. The USB transmission and audio playback are intended to be mutually exclusive operations.

#### **Audio Switches**

The two audio switches (L, R) are  $3\Omega$  switches that can pass signals that swing below ground. Crosstalk between the audio switches over the audio band is < -110dB.

Over a signal range of  $\pm 1V$  (0.707Vrms) with  $V_{DD} > 2.7V$ , these switches have an extremely low  $r_{ON}$  resistance variation. They can pass ground referenced audio signals with very low distortion (<0.06% THD+N) when delivering 15.6mW into a  $32\Omega$  headphone speaker load. See Figures 8, 9, 10, and 11 THD+N performance curves.

These switches are uni-directional switches. The audio drivers should be connected at the L and R side of the switch (pins 7 and 8) and the speaker loads should be connected at the COM side of the switch (pins 3 and 4).

The audio switches are active (turned ON) whenever the  $V_{BUS}$  voltage is  $\leq$  to  $V_{DD}$  + 0.2V or floating and the CTRL voltage  $\geq$  to 1.4V.

Note: Whenever the audio switches are ON the USB transceivers need to be in the high impedance state or static high or low state.

## **USB Switches**

The two USB switches (D+, D-) are  $5\Omega$  bidirectional switches that are designed to pass high-speed USB differential signals in the range of 0V to 400mV. The switches have low capacitance and high bandwidth to pass USB high-speed signals (480Mbps) with minimum edge and phase distortion to meet USB 2.0 signal quality specifications. See Figure 12 for High-speed Eye Pattern taken with switch in the signal path.

The maximum signal range for the USB switches is from -1.5V to  $V_{DD}$ . The signal voltage at D- and D+ should not be allowed to exceed the  $V_{DD}$  voltage rail or go below ground by more than -1.5V.

ENG24

The USB switches are active (turned ON) whenever the  $V_{BUS}$  voltage is  $\geq$  to  $V_{DD}$  + 0.8V.  $V_{BUS}$  is internally pulled low, so when  $V_{BUS}$  is floating, the USB switches are OFF.

Note: Whenever the USB switches are ON the audio drivers of the CODEC need to be at AC or DC ground or floating to keep from interfering with the data transmission.

#### ISL54205A Operation

The discussion that follows will discuss using the ISL54205A in the typical application shown in the block diagram on page 8.

#### LOGIC CONTROL

The state of the ISL54205A device is determined by the voltage at the VBUS pin (pin 2) and the CTRL pin (pin 10). Refer to truth-table on page 2 of data sheet.

The VBUS pin and CTRL pin are internally pulled low through  $4M\Omega$  resistors to ground and can be left floating. The CTRL control pin is only active when  $V_{BUS}$  is logic "0".

#### Logic control voltage levels:

 $V_{BUS} = Logic$  "0" (Low) when  $V_{BUS} \le V_{DD} + 0.2V$  or Floating.

 $V_{BUS}$  = Logic "1" (High) when  $V_{BUS} \ge V_{DD} + 0.8V$ 

CTRL = Logic "0" (Low) when  $\leq$  0.5V or floating.

CTRL = Logic "1" (High) when ≥ 1.4V

#### **Audio Mode**

If the VBUS pin = Logic "0" and CTRL pin = Logic "1," the part will be in the Audio mode. In Audio mode the L (left) and R (right)  $3\Omega$  audio switches are ON and the D- and D+  $5\Omega$  switches are OFF (high impedance). In a typical application, VDD will be in the range of 2.7V to 3.6V and will be connected to the battery or LDO of the MP3 player or cell phone. When a headphone is plugged into the common connector, nothing gets connected at the VBUS pin (it is floating) and as long as the CTRL = Logic "1," the ISL54205A part remains in the audio mode and the audio drivers of the player can drive the headphones and play music.

#### **USB Mode**

If the VBUS pin = Logic "1" and CTRL pin = Logic "0" or Logic "1," the part will go into USB mode. In USB mode, the D- and D+  $5\Omega$  switches are ON and the L and R  $3\Omega$  audio switches are OFF (high impedance). When a USB cable from a computer or USB hub is connected at the common connector, the voltage at the VBUS pin will be driven to be in the range of 4.4V to 5.25V. The ISL54205A part will go into the USB mode. In USB mode, the computer or USB hub transceiver and the MP3 player or cell phone USB transceiver are connected and digital data will be able to be transmitted back and forth.

When the USB cable is disconnected, the ISL54205A automatically turns the D+ and D- switches OFF.

#### **Low Power Mode**

If the VBUS pin = Logic "0" and CTRL pin = Logic "0," the part will be in the Low Power mode. In the Low Power mode, the audio switches and the USB switches are OFF (high impedance). In this state, the device draws typically 1nA of current.

#### **EXTERNAL VBUS SERIES RESISTOR**

The ISL54205A contains a clamp circuit between VBUS and VDD. Whenever the VBUS voltage is greater than the VDD voltage by more than 2.55V, current will flow through this clamp circuitry into the  $\rm V_{DD}$  power supply bus.

During normal USB operation,  $V_{DD}$  is in the range of 2.7V to 3.6V and  $V_{BUS}$  is in the range of 4.4V to 5.25V. The clamp circuit is not active and no current will flow through the clamp into the VDD supply.

In a USB application, the situation can exist where the  $V_{BUS}$  voltage from the computer could be applied at the VBUS pin before the  $V_{DD}$  voltage is up to its normal operating voltage range and current will flow through the clamp into the  $V_{DD}$  power supply bus. This current could be quite high when  $V_{DD}$  is OFF or at 0V and could potentially damage other components connected in the circuit. In the application circuit, a  $22k\Omega$  resistor has been put in series with the VBUS pin to limit the current to a safe level during this situation.

It is recommended that a current limiting resistor in the range of  $10k\Omega$  to  $50k\Omega$  be connected in series with the VBUS pin. It will have minimal impact on the logic level at the VBUS pin during normal USB operation and protect the circuit during the time VBUS is present before VDD is up to its normal operating voltage.

Note: No external resistor is required in applications where  $V_{BUS}$  will not exceed  $V_{DD}$  by more than 2.55V.

#### **POWER**

The power supply connected at VDD (pin 1) provides power to the ISL54205A part. Its voltage should be kept in the range of 2.7V to 3.6V when used in a USB/Audio application to ensure you get proper switching when the  $V_{BUS}$  voltage is at its lower limit of 4.4V.

FNIC242

## **Typical Performance Curves** T<sub>A</sub> = +25°C, Unless Otherwise Specified

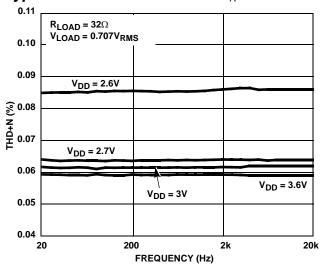



FIGURE 8. THD+N vs SUPPLY VOLTAGE vs FREQUENCY

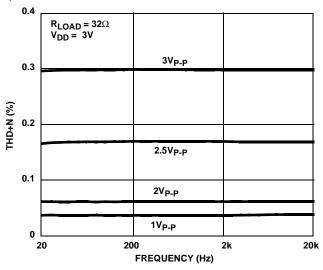



FIGURE 9. THD+N vs SIGNAL LEVELS vs FREQUENCY

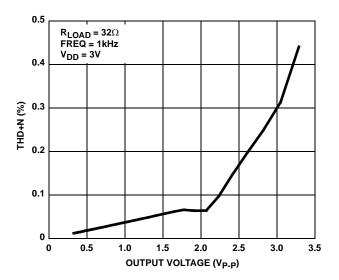



FIGURE 10. THD+N vs OUTPUT VOLTAGE

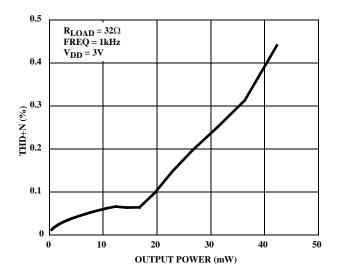



FIGURE 11. THD+N vs OUTPUT POWER

ENG2/

# Typical Performance Curves $T_A = +25$ °C, Unless Otherwise Specified (Continued)

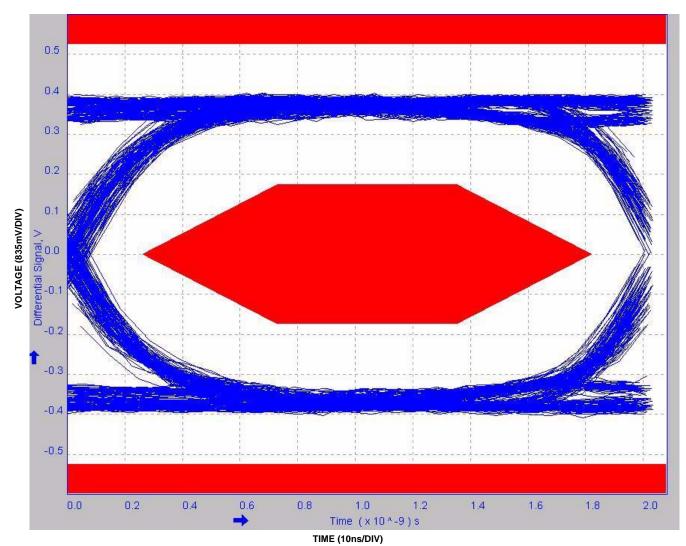



FIGURE 12. EYE PATTERN: 480Mbps WITH SWITCH IN THE SIGNAL PATH

ENG2/10

# Typical Performance Curves $T_A = +25$ °C, Unless Otherwise Specified (Continued)

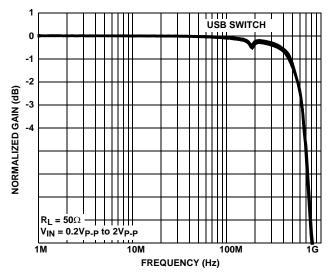
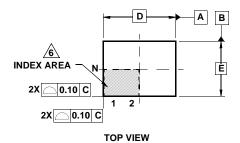


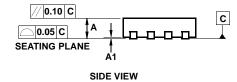

FIGURE 13. FREQUENCY RESPONSE

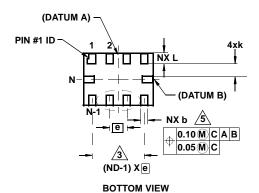
## Die Characteristics

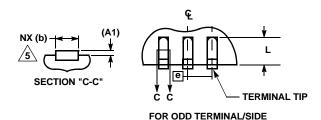
SUBSTRATE POTENTIAL (POWERED UP):

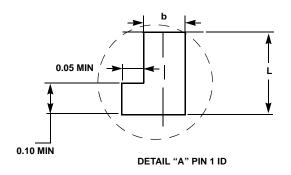
GND


TRANSISTOR COUNT:


98


PROCESS:


Submicron CMOS


## Ultra Thin Quad Flat No-Lead Plastic Package (UTQFN)

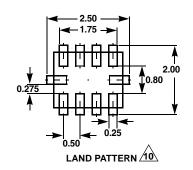




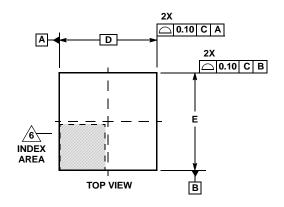


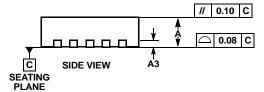


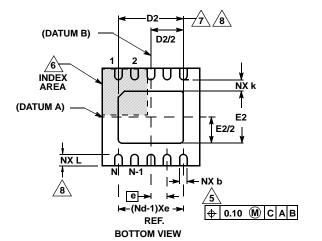


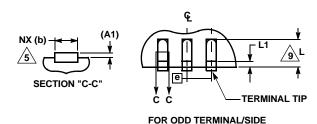

# L10.2.1x1.6A 10 LEAD ULTRA THIN QUAD FLAT NO-LEAD PLASTIC PACKAGE

| AONAGE | 1    |             |      | ,     |  |
|--------|------|-------------|------|-------|--|
|        |      | MILLIMETERS |      |       |  |
| SYMBOL | MIN  | NOMINAL     | MAX  | NOTES |  |
| Α      | 0.45 | 0.50        | 0.55 | -     |  |
| A1     | -    | -           | 0.05 | -     |  |
| A3     |      | 0.127 REF   |      | -     |  |
| b      | 0.15 | 0.20        | 0.25 | 5     |  |
| D      | 2.05 | 2.10        | 2.15 | -     |  |
| Е      | 1.55 | 1.60        | 1.65 | -     |  |
| е      |      | 0.50 BSC    |      | -     |  |
| k      | 0.20 | -           | -    | -     |  |
| L      | 0.35 | 0.40        | 0.45 | -     |  |
| N      |      | 10          | 2    |       |  |
| Nd     |      | 4           | 3    |       |  |
| Ne     |      | 1           | 1    |       |  |
| θ      | 0    | -           | 12   | 4     |  |


Rev. 3 6/06


#### NOTES:


- 1. Dimensioning and tolerancing conform to ASME Y14.5-1994.
- 2. N is the number of terminals.
- Nd and Ne refer to the number of terminals on D and E side, respectively.
- 4. All dimensions are in millimeters. Angles are in degrees.
- 5. Dimension b applies to the metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip.
- 6. The configuration of the pin #1 identifier is optional, but must be located within the zone indicated. The pin #1 identifier may be either a mold or mark feature.
- 7. Maximum package warpage is 0.05mm.
- 8. Maximum allowable burrs is 0.076mm in all directions.
- Same as JEDEC MO-255UABD except: No lead-pull-back, "A" MIN dimension = 0.45 not 0.50mm "L" MAX dimension = 0.45 not 0.42mm.
- For additional information, to assist with the PCB Land Pattern Design effort, see Intersil Technical Brief TB389.




## Thin Dual Flat No-Lead Plastic Package (TDFN)









L10.3x3A
10 LEAD THIN DUAL FLAT NO-LEAD PLASTIC PACKAGE

| SYMBOL | MIN  | NOMINAL  | MAX      | NOTES |  |  |
|--------|------|----------|----------|-------|--|--|
| А      | 0.70 | 0.75     | 0.80     | -     |  |  |
| A1     | -    | -        | 0.05     | -     |  |  |
| А3     |      | 0.20 REF |          | -     |  |  |
| b      | 0.20 | 0.25     | 0.30     | 5, 8  |  |  |
| D      | 2.95 | 3.0      | 3.05     | -     |  |  |
| D2     | 2.25 | 2.30     | 2.35     | 7, 8  |  |  |
| Е      | 2.95 | 3.0      | 3.05     | -     |  |  |
| E2     | 1.45 | 1.50     | 1.55     | 7, 8  |  |  |
| е      |      | 0.50 BSC | 0.50 BSC |       |  |  |
| k      | 0.25 | -        | -        | -     |  |  |
| L      | 0.25 | 0.30     | 0.35     | 8     |  |  |
| N      |      | 10       | 2        |       |  |  |
| Nd     |      | 5        |          | 3     |  |  |

Rev. 3 3/06

#### NOTES:

- 1. Dimensioning and tolerancing conform to ASME Y14.5-1994.
- 2. N is the number of terminals.
- 3. Nd refers to the number of terminals on D.
- 4. All dimensions are in millimeters. Angles are in degrees.
- 5. Dimension b applies to the metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip.
- 6. The configuration of the pin #1 identifier is optional, but must be located within the zone indicated. The pin #1 identifier may be either a mold or mark feature.
- 7. Dimensions D2 and E2 are for the exposed pads which provide improved electrical and thermal performance.
- Nominal dimensions are provided to assist with PCB Land Pattern Design efforts, see Intersil Technical Brief TB389.
- Compliant to JEDEC MO-229-WEED-3 except for D2 dimensions.

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

11