# 查询UM9301SM供应商



## 捷多邦,专业PCB打样工厂,24小时加急出货

## **UM9301/UM9301SM**

### **Commercial Attenuator Diode**

PRODUCT PREVIEW

### **DESCRIPTION**

The UM9301 PIN Diode utilizes special overall chip geometry with an extremely thick intrinsic "I" region, to offer unique capabilities in both RF switch and attenuator applications.

Volume production also makes the diode an economical choice suitable for many commercial low power equipments. The UM9301 has been designed for use in bridged TEE attenuator circuits commonly utilized for gain and slope control in CATV amplifiers.

Low distortion and high dynamic range are characteristic of the diodes' outstanding performance.

The UM9301 is also appropriate for switch applications, when little or no bias voltage is available. Frequent applications occur in portable 12 volt-powered communications equipments, operating at frequencies as low as 2 MHz.

#### **KEY FEATURES**

- Specified low distortion
- Low distortion properties at low reverse bias
- Resistance specified at 3 current points
- High reliability fused-in-glass construction

### **APPLICATIONS/BENEFITS**

- Little or no Bias required.
- Operates as low as 2MH<sub>Z</sub>.
- Available in leaded or surface mount packages.

#### UM9301SM



**IMPORTANT:** For the most current data, consult *MICROSEMP*'s website: http://www.microsemi.com

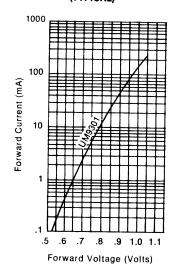
| ABSOLUTE MAXIMUM RATINGS AT 25° C (UNLESS OTHERWISE SPECIFIED) |                |            |       |  |  |  |  |  |
|----------------------------------------------------------------|----------------|------------|-------|--|--|--|--|--|
| Rating                                                         | Symbol         | Value      | Unit  |  |  |  |  |  |
| Reverse Voltage                                                | V <sub>R</sub> | 75         | Volts |  |  |  |  |  |
| Reverse Current                                                | $I_{R}$        | 10         | μΑ    |  |  |  |  |  |
| Average Power Dissipation (1, 2)                               | P <sub>A</sub> | 1.0        | Watts |  |  |  |  |  |
| Storage Temperature                                            | T stg          | -65 to 175 | °C    |  |  |  |  |  |
| Operating Temperature                                          | Тор            | -65 to 175 | °C    |  |  |  |  |  |

#### **UM9301**

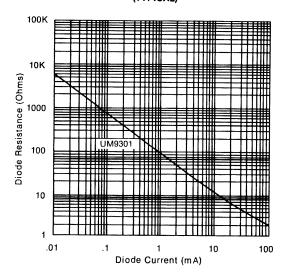


- (1) Mounted on 2" square by 0.06' thick FR4 board with a 1" x 1" square 2-ounce copper pattern..
- (2) Lead ½ inch. (12.7mm) Total to 25°C Contact.






## **Commercial Attenuator Diode**


### **PRODUCT PREVIEW**

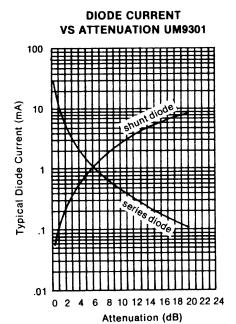
| Parameter                         | Symbol | Conditions                                                                                                                       | Min  | Тур.              | Max        | Units |
|-----------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------|------|-------------------|------------|-------|
| ► Off Characteristics             |        |                                                                                                                                  |      |                   |            |       |
| Diode Resistance                  | Rs     | I = 100 mA; f = 100 MHz<br>I = 1 mA; f = 100 MHz<br>I = 0.01 mA; f = 100 MHz                                                     | 3000 | 1.7<br>80<br>5000 | 3.0<br>150 | Ω     |
| Current for $R_S = 75 \Omega I_R$ | Rs     | f = 100 MH <sub>Z</sub>                                                                                                          | 0.5  | 1.1               | 2.0        | mA    |
| Return Loss                       | I      | Frequency Range: 10-300MH <sub>Z</sub><br>R <sub>S</sub> = 75 $\Omega$ @ 100MH <sub>Z</sub><br>Diode Terminates 75 $\Omega$ line | 25   |                   |            | dB    |
| Second Order Distortion           | V      | $f_1$ = 10 MH <sub>Z</sub> ; $f_2$ = 13 MH <sub>Z</sub><br>P = 50 dBmV; See Test Circuit                                         |      | 55                | 50         | -dB   |
|                                   |        | $F_1 = 67 \text{ MH}_Z$ ; $f_2 = 77 \text{ MH}_Z$<br>P = 50  dBmV; See Test Circuit                                              |      | 70                |            | -dB   |
| Third Order Distortion            | V      | $F_1 = 10 \text{ MH}_Z$ ; $F_2 = 13 \text{ MH}_Z$<br>P = 50 dBmV; See Test Circuit                                               |      | 75                | 65         | -dB   |
|                                   |        | Triple Beat; 205 +67 –77MH <sub>Z</sub><br>P = 50 dBmV; See Test Circuit                                                         |      | 95                |            | -dB   |
| Cross Modulation<br>Distortion    | V      | 12 Channel Test P = 50 dBmV; See Test Circuit Dix Hills Test Set                                                                 |      | 75                |            | -dB   |
| Reverse Current                   | $I_R$  | V = 75 V                                                                                                                         |      |                   | 10         | μΑ    |
| Carrier Lifetime                  | τ      | I = 10 mA                                                                                                                        | 4.0  |                   |            | μS    |

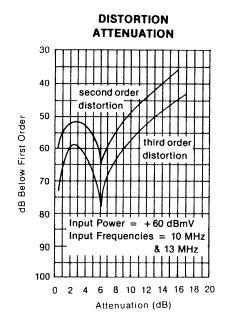
#### FORWARD CURRENT VS FORWARD VOLTAGE (TYPICAL)



#### DIODE RESISTANCE VS DIODE CURRENT (TYPICAL)

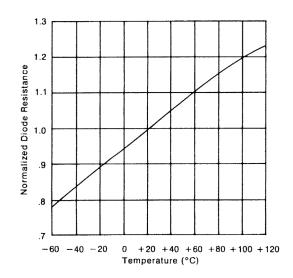



PRODUCT PRELIMINARY DATA – Information contained in this document is pre-production data, and is proprietary to Microsemi Corp. It may not be modified in any way without the express written consent of Microsemi Corp. Product referred to herein is not guaranteed to achieve preliminary or production status and product specifications, configurations, and availability may change at any time.




## **Commercial Attenuator Diode**

### **PRODUCT PREVIEW**


#### TYPICAL BRIDGED TEE ATTENUATOR PERFORMANCE





#### TEST CIRCUIT FOR DISTORTION MEASUREMENTS D.U.T. 6600 pF 6600 pF **∏−O** To 75Ω Output From 75Ω Input $75\dot{\Omega}$ $75\Omega$ 33μ Н ЗЗµ Н 34.7Ω Diode OCurrent. 5000 pF Supply 0 Note: Diode Current adjusted for 10dB Attenuation

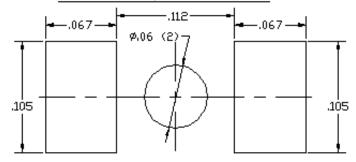
#### NORMALIZED RS VS TEMPERATURE



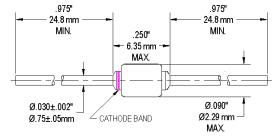


## **Commercial Attenuator Diode**

### **PRODUCT PREVIEW**


### **UM9301SM**




### NOTES:

- These dimensions will match the terminals and provide for additional solder filets at the
  outboard ends at least as wide as the term inals themselves, assuming accuracy of
  device placement within .005 inches.
- If the mounting method chosen requires use of an adhesive separate from the solder compound, a round (or square) spot of cement as shown should be sartorially located.
- 3. Dimensions shown are in inches.

### STANDARD SMIALL SQUARE ENDICAP OUTLINE



### **UM9301**



NOTES:

1. BAND INDICATE CATHODE END.



# **Commercial Attenuator Diode**

PRODUCT PREVIEW

Copyright © 2005 Microsemi