

Features

- Wide (2:1) input range
- Isolated & regulated 3W output
- Efficiency up to 82%
- Dual voltage output
- DIP package style
- metal package
- No heatsink required
- 1.5K Vdc isolation
- Pinout compatible with ERICSSON PKV
- MTBF >1,000,000 hours
- Temperature range: -40°C~+85°C
- Continuous short circuit protection
- RoHS Compliant

Model Number	Input Voltage			Output Voltage	Output Current		Package Style
Number	Nominal	Range	Max.	Voltage	Max.	Min.	Efficiency
VRA3-D5-D5-DIP	5 Vdc	4.5~9 Vdc	11 Vdc	5 Vdc	300 mA	30 mA	72%
VRA3-D5-D9-DIP	5 Vdc	4.5~9 Vdc	11 Vdc	9 Vdc	165 mA	16 mA	73%
VRA3-D5-D12-DIP	5 Vdc	4.5~9 Vdc	11 Vdc	12 Vdc	125 mA	12 mA	77%
VRA3-D5-D15-DIP	5 Vdc	4.5~9 Vdc	11 Vdc	15 Vdc	100 mA	10 mA	79%
VRA3-D12-D5-DIP	12 Vdc	9~18 Vdc	22 Vdc	5 Vdc	300 mA	30 mA	75%
VRA3-D12-D9-DIP	12 Vdc	9~18 Vdc	22 Vdc	9 Vdc	165 mA	16 mA	79%
VRA3-D12-D12-DIP	12 Vdc	9~18 Vdc	22 Vdc	12 Vdc	125 mA	12 mA	80%
VRA3-D12-D15-DIP	12 Vdc	9~18 Vdc	22 Vdc	15 Vdc	100 mA	10 mA	81%
VRA3-D24-D5-DIP	24 Vdc	18~36 Vdc	40 Vdc	5 Vdc	300 mA	30 mA	78%
VRA3-D24-D9-DIP	24 Vdc	18~36 Vdc	40 Vdc	9 Vdc	165 mA	16 mA	80%
VRA3-D24-D12-DIP	24 Vdc	18~36 Vdc	40 Vdc	12 Vdc	125 mA	12 mA	81%
VRA3-D24-D15-DIP	24 Vdc	18~36 Vdc	40 Vdc	15 Vdc	100 mA	10 mA	82%
VRA3-D48-D5-DIP	48 Vdc	36~72 Vdc	80 Vdc	5 Vdc	300 mA	30 mA	76%
VRA3-D48-D9-DIP	48 Vdc	36~72 Vdc	80 Vdc	9 Vdc	165 mA	16 mA	81%
VRA3-D48-D12-DIP	48 Vdc	36~72 Vdc	80 Vdc	12 Vdc	125 mA	12 mA	81%
VRA3-D48-D15-DIP	48 Vdc	36~72 Vdc	80 Vdc	15 Vdc	100 mA	10 mA	82%

General Specifications

Output short circuit protection	continuous, auto recovery
Temperature rise at full load	15°C typ., 25°C max.
Cooling	Free air convection
Operating temperature range	-40°C to +85°C
Storage temperature range	-55°C to +125°C
Storage humidity range	<95%
Case material	Metal
MTBF	>1,000,000 hrs.

Isolation Specifications

Item	Test Conditions	Min.	Typ.	Max.
Isolation Voltage		1500 Vdc		
Isolation Resistance		>1000 MΩ		

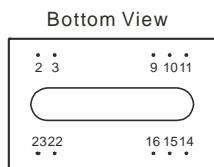
Output Specifications

Item	Test conditions	Min.	Typ.	Max.
Line Regulation	Input voltage from low to high	±0.2%	±0.5%	
Load Regulation	From 10% to 100% load	±0.5%	±1%	
Output voltage accuracy (Vo1)	5, 9V	±1%	±3%	
	12, 15, 24V	±1%	±2%	
Output voltage accuracy (Vo2)	5, 9V		±5%	
	12, 15, 24V	±2%	±3%	
Temperature drift	refer to recommended circuit		0.03%/ $^{\circ}$ C	
Ripple	20 Hz-400 Hz Bandwidth		50 mVp-p	
Noise	DC-20MHz Bandwidth	100 mVp-p	150 mVp-p	
Switching frequency	100% load	100-650 KHz		

Notes:

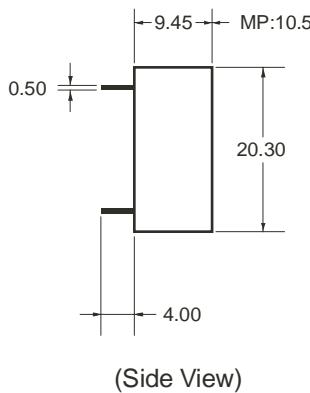
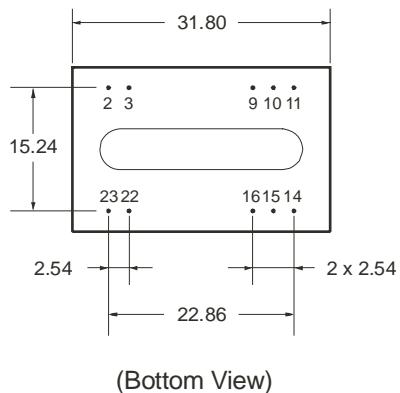
1. All specifications measured at TA=25 $^{\circ}$ C, humidity <75%, nominal input voltage and rated output load unless otherwise specified.
2. See recommended circuits below for more details.

Applications:

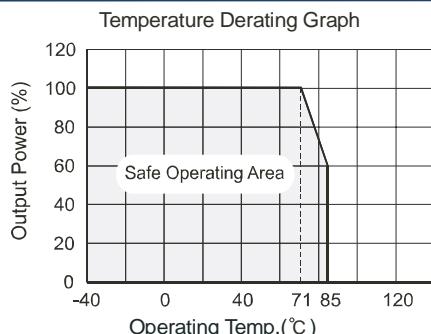

The VRA3-DIP Series are specially designed for applications where wide range input voltage power supplies are isolated from the input power supply in a distributed power supply system on a circuit board.

These products apply to:

- 1) Where the voltage of the input power supply is wide range (voltage range: 2:1);
- 2) Where isolation is necessary between input and output (Isolation Voltage = 1500 Vdc)
- 3) Where the regulation of the output voltage and the output ripple noise are demanding.

Pin Connections

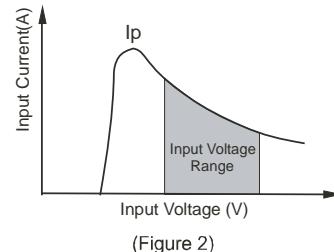
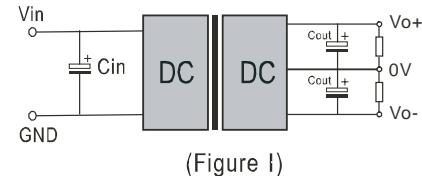

Pin	Function
2,3	-Vin
10,15	NC
14	+Vo
11	-Vo
9,16	0V
22,23	Vin

Outline Dimensions & Recommended Footprint Details

Note: All Pins on a 2.54mm pitch; All Pin diameters are 0.50 mm(Tolerance: ± 0.10);

Typical Characteristics

Application Note



Recommended circuit

All the VRA3-DIP Series have been tested according to the following recommended testing circuit before leaving factory. This series should be tested under load. Never be tested under no load (see figures 1 & 2). If you want to further decrease the input/output ripple, you can increase capacitance properly or choose capacitors with low ESR. However, the capacitance should not be too high (external capacitor table). If you want to use the products in high EMI, please choose our metal packaged products.

Input Current

When it is used in unregulated power supply, be sure that the fluctuating range of the power supply and the rippled voltage do not exceed the module standard. Input current of power supply should afford the startup current of this kind of DC/DC module (see figure 2).

General: $I_{in} < 1.3A$ max

General: Cin: 5V,12V 24V,48V 100uF 47uF 22uF
Cout:100uF

Requirement on Output Load

To ensure this module operates efficiently and reliably, a minimum load is specified for this kind of DC/DC converter in addition to a maximum load (namely full load). During operation, make sure the specified range of input voltage is not exceeded, the minimum output load is not less than 10% of the full load, and that this product **should never be operated under no load!!!** If the actual load is below the specified minimum load, the output ripple of this type of DC/DC converter will increase drastically and at the same time efficiency & reliability of the circuit will decrease deeply. If the actual output power from the load in your circuit is very small, please connect a resistor with proper resistance at the output end to in parallel to increase the load, or use our company's other products with a lower rated output power.

The products cannot be used in parallel and in plug and play.

External Capacitor Table

Vout	Cout (Max)
5	500 μ F
9	240 μ F
12	150 μ F
15	120 μ F
24	100 μ F