VSMF4720 ### Vishay Semiconductors COMPLIANT # High Speed Infrared Emitting Diode, RoHS Compliant, 870 nm, GaAlAs Double Hetero #### **DESCRIPTION** VSMF4720 is an infrared, 870 nm emitting diode in GaAlAs double hetero (DH) technology with high radiant power and high speed, molded in a PLCC-2 package for surface mounting (SMD). A 19" chip provides outstanding low forward voltage and radiant intensity even at 1 A pulse current. #### **FEATURES** Package type: surface mount Package form: PLCC-2 Dimensions (L x W x H in mm): 3.5 x 2.8 x 1.75 Peak wavelength: λ_p = 870 nm · High reliability · High radiant power · High radiant intensity • Angle of half intensity: $\varphi = \pm 60^{\circ}$ · Low forward voltage Suitable for high pulse current operation High modulation band width: f_c = 24 MHz Good spectral matching with Si photodetectors • Floor life: 4 weeks, MSL 2a, acc. J-STD-020 Lead (Pb)-free reflow soldering Lead (Pb)-free component in accordance with RoHS 2002/95/EC and WEEE 2002/96/EC #### **APPLICATIONS** - · High speed IR data transmission - High power emitter for low space applications - High performance transmissive or reflective sensors | PRODUCT SUMMARY | | | | | |------------------------|------------------------|--------------------------------|---|--| | I _e (mW/sr) | φ (deg) | λ _P (nm) | t _r (ns) | | | 16 | ± 60 | 870 | 15 | | | | I _e (mW/sr) | l _e (mW/sr) φ (deg) | I_e (mW/sr) ϕ (deg) λ_P (nm) | | #### Note Test conditions see table "Basic Characteristics" | ORDERING INFORMATION | | | | | | |----------------------|---------------|------------------------------|--------------|--|--| | ORDERING CODE | PACKAGING | REMARKS | PACKAGE FORM | | | | VSMF4720-GS08 | Tape and reel | MOQ: 7500 pcs, 1500 pcs/reel | PLCC-2 | | | | VSMF4720-GS18 | Tane and reel | MOO: 8000 pcs 8000 pcs/reel | PLCC-2 | | | #### Note MOQ: minimum order quantity | ABSOLUTE MAXIMUM RATINGS | | | | | | |-------------------------------------|-----------------------------------|-------------------|---------------|------|--| | PARAMETER | TEST CONDITION | SYMBOL | VALUE | UNIT | | | Reverse voltage | tolled A | V _R | 5 | V | | | Forward current | COM | I _F | 100 | mA | | | Peak forward current | $t_p/T = 0.5$, $t_p = 100 \mu s$ | I _{FM} | 200 | mA | | | Surge forward current | t _p = 100 μs | I _{FSM} | 1 | А | | | Power dissipation | | P _V | 160 | mW | | | Junction temperature | | Tj | 100 | °C | | | Operating temperature range | | T _{amb} | - 40 to + 85 | °C | | | Storage temperature range | | T _{stg} | - 40 to + 100 | °C | | | Soldering temperature | Acc. figure 8, J-STD-020B | T _{sd} | 260 | °C | | | Thermal resistance junction/ambient | J-STD-051, soldered on PCB | R _{thJA} | 250 | K/W | | 25 °C, unless otherwise specified # High Speed Infrared Emitting Diode, RoHS Vishay Semiconductors Compliant, 870 nm, GaAlAs Double Hetero Fig. 1 - Power Dissipation Limit vs. Ambient Temperature Fig. 2 - Forward Current Limit vs. Ambient Temperature | BASIC CHARACTERISTICS | | | | | | | |---|---|------------------|------|--------|------|-------| | PARAMETER | TEST CONDITION | SYMBOL | MIN. | TYP. | MAX. | UNIT | | Forward voltage | I _F = 100 mA, t _p = 20 ms | V _F | | 1.45 | 1.6 | V | | | $I_F = 1 \text{ A}, t_p = 100 \ \mu\text{s}$ | V _F | | 2.1 | | V | | Temperature coefficient of V _F | I _F = 1 mA | TK _{VF} | | - 1.8 | | mV/K | | Reverse current | V _R = 5 V | I _R | | | 10 | μΑ | | Junction capacitance | $V_R = 0 \text{ V, f} = 1 \text{ MHz, E} = 0$ | Cj | | 125 | | pF | | Radiant intensity | $I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$ | I _e | 10 | 16 | 30 | mW/sr | | | $I_F = 1 \text{ A}, t_p = 100 \ \mu\text{s}$ | I _e | | 150 | | mW/sr | | Radiant power | $I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$ | фe | | 50 | | mW | | Temperature coefficient of φ _e | I _F = 100 mA | TKφ _e | | - 0.35 | | %/K | | Angle of half intensity | | φ | | ± 60 | | deg | | Peak wavelength | I _F = 100 mA | λ_{p} | | 870 | | nm | | Spectral bandwidth | I _F = 100 mA | Δλ | | 40 | | nm | | Temperature coefficient of λ _p | I _F = 100 mA | TKλ _p | | 0.25 | | nm/K | | Rise time | I _F = 100 mA | t _r | | 15 | | ns | | Fall time | I _F = 100 mA | t _f | | 15 | | ns | | Cut-off frequency | $I_{DC} = 70 \text{ mA}, I_{AC} = 30 \text{ mA pp}$ | f _c | | 24 | | MHz | | Virtual source diameter | | d | | 0.67 | | mm | #### Note T_{amb} = 25 °C, unless otherwise specified ## Vishay Semiconductors High Speed Infrared Emitting Diode, RoHS Compliant, 870 nm, GaAlAs Double Hetero #### **BASIC CHARACTERISTICS** T_{amb} = 25 °C, unless otherwise specified Fig. 3 - Pulse Forward Current vs. Pulse Duration Fig. 4 - Forward Current vs. Forward Voltage Fig. 5 - Radiant Intensity vs. Forward Current Fig. 6 - Relative Radiant Power vs. Wavelength Fig. 7 - Relative Radiant Intensity vs. Angular Displacement # High Speed Infrared Emitting Diode, RoHS Vishay Semiconductors Compliant, 870 nm, GaAlAs Double Hetero #### **PACKAGE DIMENSIONS** in millimeters Drawing-No.: 6.541-5067.01-4 Issue: 4: 30.07.07 20541 #### **Mounting Pad Layout** #### **SOLDER PROFILE** Fig. 8 - Lead (Pb)-free Reflow Solder Profile acc. J-STD-020B for Preconditioning acc. to JEDEC, Level 2a #### **DRYPACK** Devices are packed in moisture barrier bags (MBB) to prevent the products from moisture absorption during transportation and storage. Each bag contains a desiccant. #### **FLOOR LIFE** Floor life (time between soldering and removing from MBB) must not exceed the time indicated on MBB label: Floor life: 4 weeks Conditions: T_{amb} < 30 °C, RH < 60 % Moisture sensitivity level 2a, acc. to J-STD-020B. #### **DRYING** In case of moisture absorption devices should be baked before soldering. Conditions see J-STD-020 or label. Devices taped on reel dry using recommended conditions 192 h at 40 $^{\circ}$ C (+ 5 $^{\circ}$ C), RH < 5 $^{\circ}$ M. #### **TAPE AND REEL** PLCC-2 components are packed in antistatic blister tape (DIN IEC (CO) 564) for automatic component insertion. Cavities of blister tape are covered with adhesive tape. ### Vishay Semiconductors ### High Speed Infrared Emitting Diode, RoHS Compliant, 870 nm, GaAlAs Double Hetero Fig. 9 - Blister Tape Fig. 10 - Tape Dimensions in mm for PLCC-2 #### **MISSING DEVICES** A maximum of 0.5 % of the total number of components per reel may be missing, exclusively missing components at the beginning and at the end of the reel. A maximum of three consecutive components may be missing, provided this gap is followed by six consecutive components. Fig. 11 - Beginning and End of Reel The tape leader is at least 160 mm and is followed by a carrier tape leader with at least 40 empty compartements. The tape leader may include the carrier tape as long as the cover tape is not connected to the carrier tape. The least component is followed by a carrier tape trailer with a least 75 empty compartements and sealed with cover tape. Fig. 12 - Dimensions of Reel-GS08 Fig. 13 - Dimensions of Reel-GS18 #### **COVER TAPE REMOVAL FORCE** The removal force lies between 0.1 N and 1.0 N at a removal speed of 5 mm/s. In order to prevent components from popping out of the blisters, the cover tape must be pulled off at an angle of 180° with regard to the feed direction. Vishay ### **Disclaimer** All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 www.vishay.com