74CBTLV3257 # Quad 1-of-2 multiplexer/demultiplexer Rev. 01. — 02 October 2009 Preliminary data sheet #### **General description** 1. The 74CBTLV3257 provides a quad 1-of-2 high-speed multiplexer/demultiplexer with a common select input (S) and an output enable input (OE). The low ON resistance of the switch allows inputs to be connected to outputs without adding propagation delay or generating additional ground bounce noise. When pin OE = LOW, one of the two switches is selected (low-impedance ON-state) with pin S. When pin \overline{OE} = HIGH, all switches are in the high-impedance OFF-state, independent of pin S. Schmitt trigger action at control input makes the circuit tolerant to slower input rise and fall times across the entire V_{CC} range from 2.3 V to 3.6 V. To ensure the high-impedance OFF-state during power-up or power-down, OE should be tied to the V_{CC} through a pull-up resistor. The minimum value of the resistor is determined by the current-sinking capability of the driver. This device is fully specified for partial power-down applications using I_{OFF}. The I_{OFF} circuitry disables the output, preventing the damaging backflow current through the device when it is powered down. #### 2. **Features** - Supply voltage range from 2.3 V to 3.6 V - High noise immunity - Complies with JEDEC standard: - JESD8-5 (2.3 V to 2.7 V) - ◆ JESD8-B/JESD36 (2.7 V to 3.6 V) - ESD protection: - HBM JESD22-A114E exceeds 2000 V - MM JESD22-A115-A exceeds 200 V - CDM AEC-Q100-011 revision B exceeds 1000 V - \blacksquare 5 Ω switch connection between two ports - Rail to rail switching on data I/O ports - CMOS low power consumption - Latch-up performance exceeds 250 mA per JESD78A Class I level A - I_{OFF} circuitry provides partial Power-down mode operation - Multiple package options - Specified from -40 °C to +85 °C and -40 °C to +125 °C ## 3. Ordering information Table 1. Ordering information | Type number | Package | | | | |---------------|-------------------|-----------------------|---|----------| | | Temperature range | Name | Description | Version | | 74CBTLV3257D | –40 °C to +125 °C | SO16 | plastic small outline package; 16 leads; body width 3.9 mm | SOT109-1 | | 74CBTLV3257DS | –40 °C to +125 °C | SSOP16 ^[1] | plastic shrink small outline package; 16 leads;
body width 3.9 mm; lead pitch 0.635 mm | SOT519-1 | | 74CBTLV3257PW | –40 °C to +125 °C | TSSOP16 | plastic thin shrink small outline package; 16 leads; body width 4.4 mm | SOT403-1 | | 74CBTLV3257BQ | –40 °C to +125 °C | DHVQFN16 | plastic dual-in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body $2.5\times3.5\times0.85~\text{mm}$ | SOT763-1 | ^[1] Also known as QSOP16. ## 4. Functional diagram ## 5. Pinning information ## 5.1 Pinning ### 5.2 Pin description Table 2. Pin description | Symbol | Pin | Description | |-----------------|--------------|----------------------------------| | S | 1 | select input | | 1B1 to 4B1 | 2, 5, 11, 14 | B1 input/output | | 1B2 to 4B2 | 3, 6, 10, 13 | B2 input/output | | 1A to 4A | 4, 7, 9, 12 | A input/output | | GND | 8 | ground (0 V) | | OE | 15 | output enable input (active LOW) | | V _{CC} | 16 | supply voltage | ## **Functional description** Function table[1] Table 3. | conductors | 74CBTLV3257 | |--------------------|--| | | Quad 1-of-2 multiplexer/demultiplexer | | tional description | AND AND DRANDRAN | | unction table[1] | ORAL ORAL | | | Function switch | | S | The state of s | | L | nA = nB1 | | Н | nA = nB2 | | Χ | disconnect nA and nBn | | | tional description nction table[1] S L H | ^[1] H = HIGH voltage level; L = LOW voltage level. #### **Limiting values** 7. Table 4. **Limiting values** In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | Min | Max | Unit | |------------------|-------------------------|--|-----------------|----------------|------| | V_{CC} | supply voltage | | -0.5 | +4.6 | V | | V _I | input voltage | | <u>[1]</u> –0.5 | +4.6 | V | | V_{SW} | switch voltage | enable and disable mode | <u>[1]</u> –0.5 | $V_{CC} + 0.5$ | V | | I_{IK} | input clamping current | $V_{I/O} < -0.5 V$ | -50 | - | mA | | I _{SK} | switch clamping current | $V_I < -0.5 \text{ V or } V_I > V_{CC} + 0.5 \text{ V}$ | - | ±50 | mA | | I _{SW} | switch current | $V_{SW} = 0 V \text{ to } V_{CC}$ | - | ±128 | mA | | I _{CC} | supply current | | - | +100 | mA | | I _{GND} | ground current | | -100 | - | mA | | T _{stg} | storage temperature | | -65 | +150 | °C | | P _{tot} | total power dissipation | $T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$ | [2] _ | 500 | mW | ^[1] The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed. #### **Recommended operating conditions** 8. Table 5. **Recommended operating conditions** | Symbol | Parameter | Conditions | Min | Max | Unit | |---------------------|-------------------------------------|----------------------------------|--------------|----------|------| | V_{CC} | supply voltage | | 2.3 | 3.6 | V | | VI | input voltage | | 0 | 3.6 | V | | V_{SW} | switch voltage | enable and disable mode | 0 | V_{CC} | V | | T _{amb} | ambient temperature | | -40 | +125 | °C | | $\Delta t/\Delta V$ | input transition rise and fall rate | V _{CC} = 2.3 V to 3.6 V | <u>[1]</u> 0 | 200 | ns/V | ^[1] Applies to control signal levels. For SO16 packages: Ptot derates linearly with 8 mW/K above 70 °C. For SSOP16 and TSSOP16 packages: P_{tot} derates linearly with 5.5 mW/K above 60 °C. For DHVQFN16 packages: Ptot derates linearly with 4.5 mW/K above 60 °C. ## 9. Static characteristics Table 6. Static characteristics At recommended operating conditions voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | T _{amb} = | –40 °C to | +85 °C | T _{amb} = -40 ° | C to +125 °C | Unit | |---------------------|------------------------------|--|--------------------|-----------|--------|--------------------------|--------------|------| | | | | Min | Typ[1] | Max | Min | Max | | | V_{IH} | HIGH-level | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ | 1.7 | - | - | 1.7 | - | V | | | input voltage | V _{CC} = 3.0 V to 3.6 V | 2.0 | - | - | 2.0 | - | V | | V _{IL} | | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ | - | - | 0.7 | - | 0.7 | V | | | voltage | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$ | - | - | 0.9 | - | 0.9 | V | | II | input leakage
current | pin \overline{OE} , S; V _I = GND to V _{CC} ;
V _{CC} = 3.6 V | - | - | ±1 | - | ±20 | μΑ | | I _{S(OFF)} | OFF-state leakage current | $V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 3.6 \text{ V}$; see Figure 5 | - | - | ±1 | - | ±20 | μА | | I _{S(ON)} | ON-state leakage current | $V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 3.6 \text{ V}$; see Figure 6 | - | - | ±1 | - | ±20 | μΑ | | I _{OFF} | power-off
leakage current | $V_1 \text{ or } V_0 = 0 \text{ V to } 3.6 \text{ V};$
$V_{CC} = 0 \text{ V}$ | - | - | ±10 | - | ±50 | μА | | I _{CC} | supply current | V_I = GND or V_{CC} ; I_O = 0 A;
V_{SW} = GND or V_{CC} ;
V_{CC} = 3.6 V | - | - | 10 | - | 50 | μА | | ΔI_{CC} | additional supply current | pin $\overline{\text{OE}}$, S; V _I = V _{CC} - 0.6 V; [2]
V _{SW} = GND or V _{CC} ;
V _{CC} = 3.6 V | - | - | 300 | - | 2000 | μА | | C _I | input
capacitance | pin \overline{OE} , S; $V_{CC} = 3.3 \text{ V}$; $V_{I} = 0 \text{ V to } 3.3 \text{ V}$ | - | 0.9 | - | - | - | pF | | $C_{\text{S(OFF)}}$ | OFF-state capacitance | $V_{CC} = 3.3 \text{ V}; V_1 = 0 \text{ V to } 3.3 \text{ V}$ | - | 5.2 | - | - | - | pF | | C _{S(ON)} | ON-state capacitance | $V_{CC} = 3.3 \text{ V}; V_{I} = 0 \text{ V to } 3.3 \text{ V}$ | - | 14.3 | - | - | - | pF | ^[1] All typical values are measured at $T_{amb} = 25$ °C. ### 9.1 Test circuits ^[2] One input at 3 V, other inputs at V_{CC} or GND. ### 9.2 ON resistance Table 7. Resistance Ron | NXP Se | emiconduct | ors | | | | STLV3 | | | |------------------------------|--------------|---|------------------------|--|---------------------|--------------------------|-------------------------------|-------------| | Table 7.
At recomn | Resistance R | ON resistance | forenced to | o CND (group | | | ORAL ORAL | tiplexe | | Symbol Parameter | | | erenceu u | J GIND (GIOUI | IU - U V | ior test circuit s | see Figure 7. | '7^ | | | - | Conditions | | _b = -40 °C to | | $T_{amb} = -40^{\circ}$ | | Unit | | Symbol | Parameter | Conditions | T _{am}
Mir | _b = -40 °C to | | | | Unit | | Symbol | - | T. | T _{am} | _b = -40 °C to | +85 °C | T _{amb} = -40 ° | C to +125 °C | Unit | | Symbol | Parameter | Conditions $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V};$ | T _{am}
Mir | _b = -40 °C to | +85 °C | T _{amb} = -40 ° | C to +125 °C | Unit Ω | | Symbol | Parameter | Conditions V _{CC} = 2.3 V to 2.7 V; see Figure 8 to Figure 10 | T _{am} Mir | $_{b} = -40 ^{\circ}\text{C to}$ Typ[1] | +85 °C
Max | T _{amb} = -40 ° | C to +125 °C
Max | | | Symbol | Parameter | Conditions $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V;}$ $\text{see } \frac{\text{Figure 8}}{\text{I}_{SW}} = 64 \text{ mA; } V_{I} = 0 \text{ V}$ | T _{am} Mir | b = -40 °C to Typ[1] 4.2 | 9 +85 °C Max | T _{amb} = -40 ° | C to +125 °C Max 15.0 | Ω | | Symbol | Parameter | Conditions $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V};$ see Figure 8 to Figure 10 $I_{SW} = 64 \text{ mA; } V_I = 0 \text{ V}$ $I_{SW} = 24 \text{ mA; } V_I = 0 \text{ V}$ | T _{am} Min | $b_b = -40 \text{ °C to}$ Typ[1] 4.2 4.2 | +85 °C Max 8.0 8.0 | T _{amb} = -40 ° | C to +125 °C Max 15.0 15.0 | Ω | | Symbol | Parameter | Conditions $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V;}$ see Figure 8 to Figure 10 $I_{SW} = 64 \text{ mA; } V_I = 0 \text{ V}$ $I_{SW} = 24 \text{ mA; } V_I = 0 \text{ V}$ $I_{SW} = 15 \text{ mA; } V_I = 1.7 \text{ V}$ $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V;}$ | T _{am} Min | $b_b = -40 \text{ °C to}$ Typ[1] 4.2 4.2 | +85 °C Max 8.0 8.0 | T _{amb} = -40 ° | C to +125 °C Max 15.0 15.0 | Ω | | Symbol | Parameter | Conditions $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V};$ $\text{see } \underline{\text{Figure 8}} \text{ to } \underline{\text{Figure 10}}$ $I_{SW} = 64 \text{ mA}; V_I = 0 \text{ V}$ $I_{SW} = 24 \text{ mA}; V_I = 0 \text{ V}$ $I_{SW} = 15 \text{ mA}; V_I = 1.7 \text{ V}$ $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V};$ $\text{see } \underline{\text{Figure 11}} \text{ to } \underline{\text{Figure 13}}$ | T _{am} Min | $b_{b} = -40 \text{ °C to}$ Typ[1] 4.2 4.2 8.4 | 8.0
8.0
40 | T _{amb} = -40 ° | 15.0
60.0 | Ω
Ω
Ω | ^[1] Typical values are measured at T_{amb} = 25 °C and nominal V_{CC} . ## 9.3 ON resistance test circuit and graphs Measured by the voltage drop between the A and B terminals at the indicated current through the switch. ON-state resistance is determined by the lower of the voltages of the two (A or B) terminals. - (1) $T_{amb} = 125 \, ^{\circ}C$. - (2) $T_{amb} = 85 \, ^{\circ}C$. - (3) $T_{amb} = 25 \, ^{\circ}C$. - (4) $T_{amb} = -40 \, ^{\circ}C$. ON resistance as a function of input voltage; Fig 9. $V_{CC} = 2.5 \text{ V}; I_{SW} = 24 \text{ mA}; V_{SW} = 0 \text{ V}$ - (1) $T_{amb} = 125 \, ^{\circ}C$. - (2) $T_{amb} = 85 \, ^{\circ}C$. - (3) $T_{amb} = 25 \, ^{\circ}C$. - (4) $T_{amb} = -40 \, ^{\circ}C$. Fig 10. ON resistance as a function of input voltage; $V_{CC} = 2.5 \text{ V}; I_{SW} = 64 \text{ mA}; V_{SW} = 1.7 \text{ V}$ - (1) $T_{amb} = 125 \, ^{\circ}C$. - (2) $T_{amb} = 85 \, ^{\circ}C$. - (3) $T_{amb} = 25 \, ^{\circ}C$. - (4) $T_{amb} = -40 \, ^{\circ}C$. Fig 11. ON resistance as a function of input voltage; $V_{CC} = 3.3 \text{ V}; I_{SW} = 15 \text{ mA}; V_{SW} = 2.4 \text{ V}$ - (1) $T_{amb} = 125 \, ^{\circ}C$. - (2) $T_{amb} = 85 \, ^{\circ}C$. - (3) $T_{amb} = 25 \, ^{\circ}C$. - (4) $T_{amb} = -40 \, ^{\circ}C$. Fig 12. ON resistance as a function of input voltage; $V_{CC} = 3.3 \text{ V}; I_{SW} = 24 \text{ mA}; V_{SW} = 0 \text{ V}$ 7 of 18 - (1) $T_{amb} = 125 \, ^{\circ}C$. - (2) $T_{amb} = 85 \, ^{\circ}C$. - (3) $T_{amb} = 25 \, ^{\circ}C$. - (4) $T_{amb} = -40 \, ^{\circ}C$. Fig 13. ON resistance as a function of input voltage; $V_{CC} = 3.3 \text{ V}$; $I_{SW} = 64 \text{ mA}$; $V_{SW} = 1.7 \text{ V}$ ## 10. Dynamic characteristics **Dynamic characteristics** Table 8. | NXP S | emiconductors | 5 | | | | < | 74CB | TLV3 | 257 | |----------------------------|---|--|------------|--------------------|-----------|---------|-------------------------|---------------------------------|-------| | 10. D | ynamic char | acteristics | | | Qı | uad 1-c | of-2 multiple | exer/demulti C to +125 °C Max | plexe | | Table 8.
GND = 0 | Dynamic characteristics V; for test circuit see | | | | | | | | PAN | | Symbol | Parameter | Conditions | | T _{amb} = | –40 °C to | +85 °C | $T_{amb} = -40^{\circ}$ | °C to +125 °C | Unit | | | | | | Min | Typ[1] | Max | Min | Max | | | pd | propagation delay | nA to nBn or nBn to nA;
see Figure 14 | [2][3] | | | | | | | | | | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ | | - | - | 0.15 | - | 0.25 | ns | | | | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$ | | - | - | 0.15 | - | 0.25 | ns | | | | S to nA; see Figure 14 | [3] | | | | | | | | | | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ | | 1.0 | 3.3 | 6.1 | 1.0 | 6.7 | ns | | | | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$ | | 1.0 | 2.8 | 5.3 | 1.0 | 5.8 | ns | | en | enable time | OE to nA or nBn;
see Figure 15 | <u>[4]</u> | | | | | | | | | | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ | | 1.0 | 2.2 | 5.6 | 1.0 | 6.2 | ns | | | | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$ | | 1.0 | 2.0 | 5.0 | 1.0 | 5.5 | ns | | | | S to nBn; see Figure 15 | | | | | | | | | | | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ | | 1.0 | 3.3 | 6.1 | 1.0 | 6.7 | ns | | | | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$ | | 1.0 | 2.7 | 5.3 | 1.0 | 5.8 | ns | | dis | disable time | OE to nA or nBn;
see Figure 15 | <u>[5]</u> | | | | | | | | | | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ | | 1.0 | 2.6 | 5.5 | 1.0 | 6.1 | ns | | | | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$ | | 1.0 | 3.1 | 5.5 | 1.0 | 6.1 | ns | | | | S to nBn; see Figure 15 | | | | | | | | | | | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ | | 1.0 | 2.7 | 4.8 | 1.0 | 5.3 | ns | | | | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$ | | 1.0 | 2.4 | 4.5 | 1.0 | 5.0 | ns | ^[1] All typical values are measured at T_{amb} = 25 °C and at nominal V_{CC} . The propagation delay is the calculated RC time constant of the maximum on-state resistance of the switch and the load capacitance, when driven by an ideal voltage source (zero output impedance). ^[3] t_{pd} is the same as t_{PLH} and t_{PHL} . ^[4] t_{en} is the same as t_{PZH} and t_{PZL} . ^[5] t_{dis} is the same as t_{PHZ} and t_{PLZ} . ## 11. Waveforms Measurement points are given in Table 9. Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load. Fig 14. The data input (nA or nBn) to output (nBn or nA) propagation delays Table 9. Measurement points | Supply voltage | Input | | | Output | | | | | |-----------------|--------------------|----------------|-------------|--------------------|--------------------------|-------------------|--|--| | V _{CC} | V _M | V _I | $t_r = t_f$ | V _M | V _X | V _Y | | | | 2.3 V to 2.7 V | 0.5V _{CC} | V_{CC} | ≤ 2.0 ns | 0.5V _{CC} | V _{OL} + 0.15 V | $V_{OH} - 0.15 V$ | | | | 3.0 V to 3.6 V | 0.5V _{CC} | V_{CC} | ≤ 2.0 ns | 0.5V _{CC} | $V_{OL} + 0.3 V$ | $V_{OH} - 0.3 V$ | | | Measurement points are given in Table 9. Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load. Fig 15. Enable and disable times Test data is given in Table 10. Definitions for test circuit: R_L = Load resistance. C_L = Load capacitance including jig and probe capacitance. R_T = Termination resistance should be equal to the output impedance Z_0 of the pulse generator. V_{EXT} = External voltage for measuring switching times. Fig 16. Test circuit for measuring switching times Table 10. Test data | Supply voltage | Load | | V _{EXT} | | | | |-----------------|-------|----------------|-------------------------------------|-------------------------------------|-------------------------------------|--| | V _{CC} | CL | R _L | t _{PLH} , t _{PHL} | t _{PZH} , t _{PHZ} | t _{PZL} , t _{PLZ} | | | 2.3 V to 2.7 V | 30 pF | 500 Ω | open | GND | 2V _{CC} | | | 3.0 V to 3.6 V | 50 pF | 500 Ω | open | GND | 2V _{CC} | | ## 12. Package outline ### SO16: plastic small outline package; 16 leads; body width 3.9 mm | UNIT | A
max. | A ₁ | A ₂ | A ₃ | bp | С | D ⁽¹⁾ | E ⁽¹⁾ | е | HE | L | Lp | Q | v | w | у | Z ⁽¹⁾ | θ | |--------|-----------|----------------|----------------|----------------|--------------|------------------|------------------|------------------|------|----------------|-------|----------------|------------|------|------|-------|------------------|----| | mm | 1.75 | 0.25
0.10 | 1.45
1.25 | 0.25 | 0.49
0.36 | 0.25
0.19 | 10.0
9.8 | 4.0
3.8 | 1.27 | 6.2
5.8 | 1.05 | 1.0
0.4 | 0.7
0.6 | 0.25 | 0.25 | 0.1 | 0.7
0.3 | 8° | | inches | 0.069 | 0.010
0.004 | 0.057
0.049 | 0.01 | I | 0.0100
0.0075 | 0.39
0.38 | 0.16
0.15 | 0.05 | 0.244
0.228 | 0.041 | 0.039
0.016 | | 0.01 | 0.01 | 0.004 | 0.028
0.012 | 0° | #### Note 1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included. | OUTLINE | | REFER | ENCES | EUROPEAN | ISSUE DATE | |----------|--------|--------|-------|------------|---------------------------------| | VERSION | IEC | JEDEC | JEITA | PROJECTION | ISSUE DATE | | SOT109-1 | 076E07 | MS-012 | | | 99-12-27
03-02-19 | Fig 17. Package outline SOT109-1 (SO16) SSOP16: plastic shrink small outline package; 16 leads; body width 3.9 mm; lead pitch 0.635 mm #### Note 1. Plastic or metal protrusions of 0.2 mm maximum per side are not included. | OUTLINE | | REFER | EUROPEAN | ISSUE DATE | | | |----------|-----|-------|----------|------------|------------|-----------------------------------| | VERSION | IEC | JEDEC | JEITA | | PROJECTION | ISSUE DATE | | SOT519-1 | | | | | | -99-05-04-
03-02-18 | Fig 18. Package outline SOT519-1 (SSOP16) TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm | UNIT | A
max. | A ₁ | A ₂ | A ₃ | bp | C | D ⁽¹⁾ | E ⁽²⁾ | е | HE | L | Lp | Q | v | w | у | Z ⁽¹⁾ | θ | | |------|-----------|----------------|----------------|----------------|--------------|------------|------------------|------------------|------|------------|---|--------------|------------|-----|------|-----|------------------|----------|--| | mm | 1.1 | 0.15
0.05 | 0.95
0.80 | 0.25 | 0.30
0.19 | 0.2
0.1 | 5.1
4.9 | 4.5
4.3 | 0.65 | 6.6
6.2 | 1 | 0.75
0.50 | 0.4
0.3 | 0.2 | 0.13 | 0.1 | 0.40
0.06 | 8°
0° | | - 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. - 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included. | OUTLINE | | REFER | EUROPEAN | ISSUE DATE | | | | |----------|-----|--------|----------|------------|------------|---------------------------------|--| | VERSION | IEC | JEDEC | JEITA | | PROJECTION | ISSUE DATE | | | SOT403-1 | | MO-153 | | | | 99-12-27
03-02-18 | | Fig 19. Package outline SOT403-1 (TSSOP16) DHVQFN16: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body 2.5 x 3.5 x 0.85 mm Fig 20. Package outline SOT763-1 (DHVQFN16) ## 13. Abbreviations ### Table 11. Abbreviations | Acronym | Description | | |---------|---|---| | CDM | Charged Device Model | r | | CMOS | Complementary Metal-Oxide Semiconductor | | | DUT | Device Under Test | | | ESD | ElectroStatic Discharge | | | HBM | Human Body Model | | | MM | Machine Model | | | TTL | Transistor-Transistor Logic | | ## 14. Revision history ### Table 12. Revision history | Document ID | Release date | Data sheet status | Change notice | Supersedes | |---------------|--------------|--------------------|---------------|------------| | 74CBTLV3257_1 | <tbd></tbd> | Product data sheet | - | - | ## 15. Legal information #### 15.1 **Data sheet status** | NXP Semiconductors | 74CBTLV3257 | |--|---| | | Quad 1-of-2 multiplexer/demultiplexer | | | RAN RAN RAN SE | | 15. Legal information | ORA ORA ORA | | 15.1 Data sheet status | DRAMP DRAMP | | Document status[1][2] Product status[3] | Definition | | Objective [short] data sheet Development | This document contains data from the objective specification for product development. | | Preliminary [short] data sheet Qualification | This document contains data from the preliminary specification. | | Product [short] data sheet Production | This document contains the product specification. | - Please consult the most recently issued document before initiating or completing a design. - The term 'short data sheet' is explained in section "Definitions" - The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. #### 15.2 **Definitions** Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. #### 15.3 **Disclaimers** General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk. **Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability. Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities. #### 15.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners ### 16. Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com ### 17. Contents | 1 | General description | |------|---| | 2 | Features | | 3 | Ordering information | | 4 | Functional diagram 2 | | 5 | Pinning information 3 | | 5.1 | Pinning | | 5.2 | Pin description | | 6 | Functional description 4 | | 7 | Limiting values 4 | | 8 | Recommended operating conditions 4 | | 9 | Static characteristics 5 | | 9.1 | Test circuits5 | | 9.2 | ON resistance | | 9.3 | ON resistance test circuit and graphs 6 | | 10 | Dynamic characteristics 9 | | 11 | Waveforms | | 12 | Package outline | | 13 | Abbreviations | | 14 | Revision history 16 | | 15 | Legal information | | 15.1 | Data sheet status 17 | | 15.2 | Definitions | | 15.3 | Disclaimers | | 15.4 | Trademarks 17 | | 16 | Contact information 17 | | 17 | Contents | Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.