SN74AHC1G00 SCLS313O -MARCH 1996-REVISED APRIL 2016 # **SN74AHC1G00 Single 2-Input Positive-NAND Gate** #### **Features** - Operating Range: 2 V to 5.5 V Maximum t_{pd} of 6.5 ns at 5 V - Low Power Consumption: Maximum I_{CC} of 10 μA - ±8-mA Output Drive at 5 V - Schmitt Trigger Action at All Inputs Makes the Circuit Tolerant for Slower Input Rise and Fall - Latch-Up Performance Exceeds 250 mA Per JESD 17 - ESD Protection Exceeds JESD 22 - 2000-V Human-Body Model (A114-A) - 1000-V Charged-Device Model (C101) #### 2 Applications - **IP Phones** - Notebook PCs - **Printers** - Access Control and Security - Solar Inverters - Personal Electronics #### 3 Description The $\underline{SN7}4AHC1\underline{G}00$ performs the Boolean function $Y = \overline{A \cdot B}$ or $Y = \overline{A} + \overline{B}$ in positive logic. #### Device Information⁽¹⁾ | PART NUMBER | PACKAGE | BODY SIZE (NOM) | |----------------|------------|-------------------| | SN74AHC1G00DBV | SOT-23 (5) | 2.90 mm × 1.60 mm | | SN74AHC1G00DCK | SC70 (5) | 2.00 mm x 1.25 mm | | SN74AHC1G00DRL | SOT (5) | 1.60 mm × 1.20 mm | ⁽¹⁾ For all available packages, see the orderable addendum at the end of the data sheet. #### Logic Diagram (Positive Logic) #### **Table of Contents** | 1 | Features 1 | | 8.2 Functional Block Diagram | | |---|--|----|--------------------------------------|----| | 2 | Applications 1 | | 8.3 Feature Description | 9 | | 3 | Description 1 | | 8.4 Device Functional Modes | 9 | | 4 | Revision History2 | 9 | Application and Implementation | 10 | | 5 | Pin Configuration and Functions3 | | 9.1 Application Information | 10 | | 6 | Specifications4 | | 9.2 Typical Application | 10 | | • | 6.1 Absolute Maximum Ratings | 10 | Power Supply Recommendations | 12 | | | 6.2 ESD Ratings | 11 | Layout | 12 | | | 6.3 Recommended Operating Conditions 4 | | 11.1 Layout Guidelines | 12 | | | 6.4 Thermal Information5 | | 11.2 Layout Example | 12 | | | 6.5 Electrical Characteristics | 12 | Device and Documentation Support | 13 | | | 6.6 Switching Characteristics: V _{CC} = 3.3 V ± 0.3 V 6 | | 12.1 Documentation Support | 13 | | | 6.7 Switching Characteristics: V _{CC} = 5 V ± 0.5 V 6 | | 12.2 Community Resources | 13 | | | 6.8 Operating Characteristics | | 12.3 Trademarks | 1: | | | 6.9 Typical Characteristics | | 12.4 Electrostatic Discharge Caution | 13 | | 7 | Parameter Measurement information 8 | | 12.5 Glossary | 13 | | 8 | Detailed Description9 | 13 | Mechanical, Packaging, and Orderable | | | | 8.1 Overview | | Information | 13 | #### 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. # Changes from Revision N (May 2013) to Revision O Added Device Information table, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section. Changes from Original (March 1996) to Revision N Submit Documentation Feedback Copyright © 1996–2016, Texas Instruments Incorporated # 5 Pin Configuration and Functions **Pin Functions** | P | IN | 1/0 | DESCRIPTION | |-----|-----------------|-----|-------------| | NO. | NAME | I/O | DESCRIPTION | | 1 | Α | I | A input | | 2 | В | I | B input | | 3 | GND | _ | Ground | | 4 | Υ | 0 | Output | | 5 | V _{CC} | _ | Power | #### 6 Specifications ### 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) | | | | MIN | MAX | UNIT | |------------------|---|-----------------------------|------|----------------|------| | V_{CC} | Supply voltage | | -0.5 | 7 | V | | V_{I} | Input voltage (2) | | -0.5 | 7 | V | | Vo | Output voltage (2) | | -0.5 | $V_{CC} + 0.5$ | V | | I _{IK} | Input clamp current | V _I < 0 | | -20 | mA | | I _{OK} | Output clamp current | $V_O < 0$ or $V_O > V_{CC}$ | | ±20 | mA | | Io | Continuous output current | $V_O = 0$ to V_{CC} | | ±25 | mA | | | Continuous current through V _{CC} or | r GND | | ±50 | mA | | TJ | Maximum junction temperature | · | | 150 | °C | | T _{stg} | Storage temperature | | -65 | 150 | °C | ⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. #### 6.2 ESD Ratings | | | | VALUE | UNIT | |--------------------|-------------------------|---|-------|------| | | | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) | ±2000 | | | V _(ESD) | Electrostatic discharge | Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) | ±1000 | V | ⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. #### 6.3 Recommended Operating Conditions See (1) | | | | MIN | MAX | UNIT | |-----------------|------------------------------------|---|------|----------|--------| | V _{CC} | Supply voltage | | 2 | 5.5 | V | | | | $V_{CC} = 2 V$ | 1.5 | | | | V_{IH} | High-level input voltage | V _{CC} = 3 V | 2.1 | | V | | | | V _{CC} = 5.5 V | 3.85 | | | | | | V _{CC} = 2 V | | 0.5 | | | V_{IL} | Low-level input voltage | V _{CC} = 3 V | | 0.9 | V | | | | V _{CC} = 5.5 V | | 1.65 | | | V_{I} | Input voltage | | 0 | 5.5 | V | | V_{O} | Output voltage | | 0 | V_{CC} | V | | | | V _{CC} = 2 V | | -50 | μΑ | | I_{OH} | High-level output current | $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | | -4 | mA | | | | $V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$ | | -8 | ША | | | | $V_{CC} = 2 V$ | | 50 | μΑ | | I_{OL} | Low-level output current | $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | | 4 | mA | | | | $V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$ | | 8 | IIIA | | Λ+/Λ\/ | Input transition rice or fall rate | $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | | 100 | ns/V | | Δt/Δv | Input transition rise or fall rate | transition rise of fall rate $V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$ | | 20 | 115/ V | | T _A | Operating free-air temperature | | -40 | 125 | °C | All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. See the TI application report, Implications of Slow or Floating CMOS Inputs, SCBA004. ⁽²⁾ The input and output voltage ratings may be exceeded if the input and output current ratings are observed. ⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. #### 6.4 Thermal Information | | | | SN74AHC1G00 | | | | | |----------------------|--|--------------|-------------|-----------|------|--|--| | | THERMAL METRIC ⁽¹⁾ | DBV (SOT-23) | DCK (SC70) | DRL (SOT) | UNIT | | | | | | 5 PINS | 5 PINS | 5 PINS | | | | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | 240 | 276.53 | 256 | °C/W | | | | $R_{\theta JC(top)}$ | Junction-to-case (top) thermal resistance | 174.5 | 118.5 | 130 | °C/W | | | | $R_{\theta JB}$ | Junction-to-board thermal resistance | 73.7 | 62.8 | 152 | °C/W | | | | ΨЈТ | Junction-to-top characterization parameter | 54.9 | 6.7 | 9.9 | °C/W | | | | Ψ_{JB} | Junction-to-board characterization parameter | 72.9 | 62.1 | 152 | °C/W | | | ⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953. #### 6.5 Electrical Characteristics over operating free-air temperature range (unless otherwise noted) | PARAMETER ⁽¹⁾ | TEST (| CONDITIONS | V _{cc} | MIN | TYP | MAX | UNIT | |--------------------------|---|--|-----------------|------|-----|------|------| | | | T _A = 25°C | | 1.9 | 2 | | | | | | $T_A = -40$ °C to +85°C | 2 V | 1.9 | | | | | | | $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$ | | 1.9 | | | | | | | T _A = 25°C | | 2.9 | 3 | | | | I _C | $I_{OH} = -50 \mu A$ | $T_A = -40$ °C to +85°C | 3 V | 2.9 | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | T _A = 25°C | | 4.4 | 4.5 | | | | / _{OH} | | $T_A = -40$ °C to +85°C | 4.5 V | 4.4 | | | V | | | | $T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$ | | 4.4 | | | | | | | T _A = 25°C | | 2.58 | | | | | | $I_{OH} = -4 \text{ mA}$ | $T_A = -40$ °C to +85°C | 3 V | 2.48 | | | | | | | $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$ | | 2.48 | | | | | | | T _A = 25°C | | 3.94 | | | | | | $I_{OH} = -8 \text{ mA}$ | $T_A = -40$ °C to +85°C | 4.5 V | 3.8 | | | | | | | $T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$ | | 3.8 | | | | | | | T _A = 25°C | | | | 0.1 | | | | | $T_A = -40$ °C to +85°C | 2 V | | | 0.1 | | | | | $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$ | | | | 0.1 | | | | | T _A = 25°C | | | | 0.1 | | | | $I_{OL} = 50 \mu A$ | $T_A = -40$ °C to +85°C | 3 V | | | 0.1 | | | | | $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$ | | | | 0.1 | | | | | T _A = 25°C | | | | 0.1 | | | OL. | | $T_A = -40$ °C to +85°C | 4.5 V | | | 0.1 | V | | | | $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$ | | | | 0.1 | | | | | T _A = 25°C | | | | 0.36 | | | | I _{OL} = 4 mA | $T_A = -40$ °C to +85°C | 3 V | | | 0.44 | | | | | $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$ | | | | 0.44 | | | | | T _A = 25°C | | | | 0.36 | | | | $I_{OL} = 8 \text{ mA}$ | $T_A = -40$ °C to +85°C | 4.5 V | | | 0.44 | | | | | $T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$ | | | | 0.44 | | | | | T _A = 25°C | | | | ±0.1 | | | | V _I = 5.5 V or GND | $T_A = -40$ °C to +85°C | 0 V to 5.5 V | | | ±1 | μΑ | | | | $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$ | | | | ±1 | | Product Folder Links: SN74AHC1G00 (1) Recommended $T_A = -40^{\circ}C$ to $+125^{\circ}C$ #### **Electrical Characteristics (continued)** over operating free-air temperature range (unless otherwise noted) | PARAMETER ⁽¹⁾ | TEST CONDI | TIONS | V _{CC} | MIN | TYP | MAX | UNIT | |--------------------------|---|--|-----------------|-----|-----|-----|------| | | | $T_A = 25^{\circ}C$ | | | | 1 | | | I _{CC} | $V_I = V_{CC}$ or GND, $I_O = 0$ | $T_A = -40$ °C to +85°C | 5.5 V | | | 10 | μΑ | | | | $T_A = -40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}$ | | | | 10 | | | | | $T_A = 25^{\circ}C$ | | | 2 | 10 | | | C _i | V _I = V _{CC} or GND | $T_A = -40$ °C to +85°C | 5 V | | | 10 | pF | | | | $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$ | | | | 10 | | # 6.6 Switching Characteristics: $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | OUTPUT
CAPACITANCE | T _A ⁽¹⁾ | MIN | TYP | MAX | UNIT | |---|-----------------|----------------|--------------------------|-------------------------------|-----|-----|------|------| | | | | | 25°C | | 5.5 | 7.9 | | | t _{PLH} | | | | -40°C to +85°C | 1 | | 9.5 | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | A or B | V | C = 15 pE | -40°C to +125°C | 1 | | 10.5 | | | | A or B | Y | Υ C _L = 15 pF | 25°C | | 5.5 | 7.9 | ns | | | -40°C to +85°C | 1 | | 9.5 | | | | | | | | | | -40°C to +125°C | 1 | | 10.5 | | | | | | | 25°C | | 8 | 11.4 | | | t _{PLH} | | | | -40°C to +85°C | 1 | | 13 | | | | A or D | V | C 50 pF | -40°C to +125°C | 1 | | 14 | | | | A or B | Ť | Y $C_L = 50 \text{ pF}$ | 25°C | | 8 | 11.4 | ns | | t _{PHL} | | | | -40°C to +85°C | 1 | | 13 | | | | | | | -40°C to +125°C | 1 | | 14 | | ⁽¹⁾ Recommended $T_A = -40^{\circ}C$ to $+125^{\circ}C$ # 6.7 Switching Characteristics: $V_{CC} = 5 V \pm 0.5 V$ over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 2) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | OUTPUT
CAPACITANCE | T _A ⁽¹⁾ | MIN | TYP | MAX | UNIT | |--|-----------------|----------------|-----------------------|-------------------------------|-----|-----|-----|------| | | | | | 25°C | | 3.7 | 5.5 | | | t _{PLH} | | | | -40°C to +85°C | 1 | | 6.5 | | | A or B Y $C_L = 15 \text{ pF}$ t_{PHL} | A or P | V | C = 15 pF | -40°C to +125°C | 1 | | 7 | ns | | | 25°C | | 3.7 | 5.5 | 115 | | | | | | -40°C to +85°C | 1 | | 6.5 | | | | | | | | | | -40°C to +125°C | 1 | | 7 | | | | | | | 25°C | | 5.2 | 7.5 | | | t _{PLH} | | | | -40°C to +85°C | 1 | | 6.5 | | | | A or D | Y | C 50 pF | -40°C to +125°C | 1 | | 9 | | | | A or B | Y | $C_L = 50 \text{ pF}$ | 25°C | | 5.2 | 7.5 | ns | | t _{PHL} | | | | -40°C to +85°C | 1 | | 6.5 | | | | | | | -40°C to +125°C | 1 | | 9 | | (1) Recommended $T_A = -40^{\circ}C$ to $+125^{\circ}C$ Submit Documentation Feedback Copyright © 1996–2016, Texas Instruments Incorporated # 6.8 Operating Characteristics $V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}$ | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |----------|-------------------------------|--------------------|-----|-----|-----|------| | C_{pd} | Power dissipation capacitance | No load, f = 1 MHz | | 9.5 | | pF | # 6.9 Typical Characteristics $C_L = 50 pF$ Figure 1. Propagation Delay vs Temperature Copyright © 1996–2016, Texas Instruments Incorporated Submit Documentation Feedback #### 7 Parameter Measurement information - A. C₁ includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. - Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 3 ns, $t_f \leq$ 3 ns - D. The outputs are measured one at a time with one input transition per measurement. - E. All parameters and waveforms are not applicable to all devices. Figure 2. Load Circuit and Voltage Waveforms Submit Documentation Feedback #### 8 Detailed Description #### 8.1 Overview The SN74AHC1G00 device performs the NAND Boolean function $Y = \overline{A \times B}$ or $Y = \overline{A} + \overline{B}$ in positive logic. The device has a wide operating range of V_{CC} from 2 V to 5 V. #### 8.2 Functional Block Diagram Figure 3. Logic Diagram (Positive Logic) #### 8.3 Feature Description The SN74AHC1G00 device has wide operating voltage range for logic system from 2 V to 5 V. The low propagation delay allows fast switching and higher speeds of operation. In addition, the low power consumption of 10-uA (maximum) makes this device a good choice for portable and battery power-sensitive applications. The Schmitt trigger action on all inputs have noise rejection capabilities. #### 8.4 Device Functional Modes Table 1 lists the functions of the SN74AHC1G00 device. **Table 1. Function Table** | INP | OUTPUT | | | | |-----|--------|---|--|--| | Α | В | Y | | | | Н | Н | L | | | | L | X | Н | | | | X | L | Н | | | #### 9 Application and Implementation #### NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. #### 9.1 Application Information The SN74AHC1G00 device is a low-drive CMOS device with 8-mA output drive at 5 V. It can be used for a multitude of bus interface type applications where output ringing is a concern. The low drive and slow edge rates minimizes overshoot and undershoot on the outputs. The NAND gates are used to build simple SR flip flop. They could be used in removing noise from a switch debounce circuit #### 9.2 Typical Application Figure 4. Typical Application #### 9.2.1 Design Requirements This SN74AHC1G00 device uses CMOS technology and has balanced output drive. Take care to avoid bus contention becuase it can drive currents that would exceed maximum limits. The high drive also creates fast edges into light loads. Routing and load conditions must be considered to prevent ringing. #### 9.2.2 Detailed Design Procedure - · Recommended input conditions: - Specified high and low levels. See V_{IH} and V_{IL} in Recommended Operating Conditions. - Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid $V_{\rm CC}$. - Recommended output conditions: - Load currents must not exceed 25 mA per output and 50 mA total for the part. - Outputs should not be pulled above V_{CC}. Submit Documentation Feedback # **Typical Application (continued)** # 9.2.3 Application Curve $C_L = 15 pF$ Figure 5. Propagation Delay vs Temperature Product Folder Links: SN74AHC1G00 Copyright © 1996–2016, Texas Instruments Incorporated #### 10 Power Supply Recommendations The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Recommended Operating Conditions*. Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, TI recommends a 0.1- μ F capacitor; if there are multiple V_{CC} terminals, then TI recommends a 0.01- μ F or 0.022- μ F capacitor for each power terminal. Multiple bypass capacitors can be paralleled to reject different frequencies of noise. Frequencies of 0.1 μ F and 1 μ F are commonly used in parallel. The bypass capacitor must be installed as close as possible to the power terminal for best results. #### 11 Layout #### 11.1 Layout Guidelines When using multiple bit logic devices inputs must not ever float. In many cases, functions or parts of functions of digital logic devices are unused. For example, when only two inputs of a triple-input AND gate are used or only three of the four buffer gates are used. Such input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. The following are the rules must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} whichever make more sense or is more convenient. Floating outputs is generally acceptable, unless the part is a transceiver. If the transceiver has an output enable pin, it disables the outputs section of the part when asserted. This does not disable the input section of the input and output, so they also cannot float when disabled. #### 11.2 Layout Example Figure 6. Layout Recommendation #### 12 Device and Documentation Support #### 12.1 Documentation Support #### 12.1.1 Related Documentation For related documentation see the following: - Introduction to Logic, SLVA700 - Implications of Slow or Floating CMOS Inputs, SCBA004 #### 12.2 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community T's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. **Design Support** *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support. #### 12.3 Trademarks E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. #### 12.4 Electrostatic Discharge Caution These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. #### 12.5 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. #### 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. 25-Oct-2016 #### PACKAGING INFORMATION | Orderable Device | Status | Package Type | _ | Pins | Package | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | Device Marking | Samples | |-------------------|----------|--------------|---------|------|---------|----------------------------|------------------|--------------------|--------------|--------------------------------|---------| | | (1) | | Drawing | | Qty | (2) | (6) | (3) | | (4/5) | | | SN74AHC1G00DBVR | ACTIVE | SOT-23 | DBV | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (A003 ~ A00G ~
A00L ~ A00S) | Samples | | SN74AHC1G00DBVRE4 | ACTIVE | SOT-23 | DBV | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (A003 ~ A00G ~
A00L ~ A00S) | Samples | | SN74AHC1G00DBVRG4 | ACTIVE | SOT-23 | DBV | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (A003 ~ A00G ~
A00L ~ A00S) | Samples | | SN74AHC1G00DBVT | ACTIVE | SOT-23 | DBV | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (A003 ~ A00G ~
A00L ~ A00S) | Samples | | SN74AHC1G00DBVTG4 | ACTIVE | SOT-23 | DBV | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (A003 ~ A00G ~
A00L ~ A00S) | Samples | | SN74AHC1G00DCKR | ACTIVE | SC70 | DCK | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (AA3 ~ AAG ~ AAL ~
AAS) | Samples | | SN74AHC1G00DCKRE4 | ACTIVE | SC70 | DCK | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (AA3 ~ AAG ~ AAL ~
AAS) | Samples | | SN74AHC1G00DCKRG4 | ACTIVE | SC70 | DCK | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (AA3 ~ AAG ~ AAL ~
AAS) | Samples | | SN74AHC1G00DCKT | ACTIVE | SC70 | DCK | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (AA3 ~ AAG ~ AAL ~
AAS) | Samples | | SN74AHC1G00DCKTG4 | ACTIVE | SC70 | DCK | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (AA3 ~ AAG ~ AAL ~
AAS) | Samples | | SN74AHC1G00DRLR | ACTIVE | SOT | DRL | 5 | 4000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (AAB ~ AAS) | Samples | | SN74AHC1G00HDCK3 | OBSOLETI | SC70 | DCK | 5 | | TBD | Call TI | Call TI | -40 to 125 | | _ | ⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. **TBD:** The Pb-Free/Green conversion plan has not been defined. **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. ⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. #### PACKAGE OPTION ADDENDUM 25-Oct-2016 Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sh/Rr): Til defines "Green" to mean Ph-Free (RoHS compatible) and free of Browing (Rr) and Antimony (Sh) based flame retardants (Br or Sh do not exceed 0.1% by weight Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### OTHER QUALIFIED VERSIONS OF SN74AHC1G00: Automotive: SN74AHC1G00-Q1 NOTE: Qualified Version Definitions: Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects # PACKAGE MATERIALS INFORMATION www.ti.com 5-Sep-2016 #### TAPE AND REEL INFORMATION | | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | All dimensions are nominal | 1 | | _ | | | | | | | 1 | | | |----------------------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | | SN74AHC1G00DBVR | SOT-23 | DBV | 5 | 3000 | 180.0 | 8.4 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 | | SN74AHC1G00DBVR | SOT-23 | DBV | 5 | 3000 | 178.0 | 9.0 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 | | SN74AHC1G00DBVT | SOT-23 | DBV | 5 | 250 | 178.0 | 9.0 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 | | SN74AHC1G00DCKR | SC70 | DCK | 5 | 3000 | 180.0 | 8.4 | 2.47 | 2.3 | 1.25 | 4.0 | 8.0 | Q3 | | SN74AHC1G00DCKR | SC70 | DCK | 5 | 3000 | 178.0 | 9.0 | 2.4 | 2.5 | 1.2 | 4.0 | 8.0 | Q3 | | SN74AHC1G00DCKR | SC70 | DCK | 5 | 3000 | 178.0 | 9.2 | 2.4 | 2.4 | 1.22 | 4.0 | 8.0 | Q3 | | SN74AHC1G00DCKT | SC70 | DCK | 5 | 250 | 178.0 | 9.0 | 2.4 | 2.5 | 1.2 | 4.0 | 8.0 | Q3 | | SN74AHC1G00DCKT | SC70 | DCK | 5 | 250 | 180.0 | 9.2 | 2.3 | 2.55 | 1.2 | 4.0 | 8.0 | Q3 | | SN74AHC1G00DCKT | SC70 | DCK | 5 | 250 | 178.0 | 9.2 | 2.4 | 2.4 | 1.22 | 4.0 | 8.0 | Q3 | | SN74AHC1G00DRLR | SOT | DRL | 5 | 4000 | 180.0 | 9.5 | 1.78 | 1.78 | 0.69 | 4.0 | 8.0 | Q3 | | SN74AHC1G00DRLR | SOT | DRL | 5 | 4000 | 180.0 | 8.4 | 1.98 | 1.78 | 0.69 | 4.0 | 8.0 | Q3 | www.ti.com 5-Sep-2016 *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |-----------------|--------------|-----------------|------|------|-------------|------------|-------------| | SN74AHC1G00DBVR | SOT-23 | DBV | 5 | 3000 | 202.0 | 201.0 | 28.0 | | SN74AHC1G00DBVR | SOT-23 | DBV | 5 | 3000 | 180.0 | 180.0 | 18.0 | | SN74AHC1G00DBVT | SOT-23 | DBV | 5 | 250 | 180.0 | 180.0 | 18.0 | | SN74AHC1G00DCKR | SC70 | DCK | 5 | 3000 | 202.0 | 201.0 | 28.0 | | SN74AHC1G00DCKR | SC70 | DCK | 5 | 3000 | 180.0 | 180.0 | 18.0 | | SN74AHC1G00DCKR | SC70 | DCK | 5 | 3000 | 180.0 | 180.0 | 18.0 | | SN74AHC1G00DCKT | SC70 | DCK | 5 | 250 | 180.0 | 180.0 | 18.0 | | SN74AHC1G00DCKT | SC70 | DCK | 5 | 250 | 205.0 | 200.0 | 33.0 | | SN74AHC1G00DCKT | SC70 | DCK | 5 | 250 | 180.0 | 180.0 | 18.0 | | SN74AHC1G00DRLR | SOT | DRL | 5 | 4000 | 184.0 | 184.0 | 19.0 | | SN74AHC1G00DRLR | SOT | DRL | 5 | 4000 | 202.0 | 201.0 | 28.0 | # DCK (R-PDSO-G5) # PLASTIC SMALL-OUTLINE PACKAGE NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side. - D. Falls within JEDEC MO-203 variation AA. # DCK (R-PDSO-G5) # PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad. - D. Publication IPC-7351 is recommended for alternate designs. - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations. # DRL (R-PDSO-N5) # PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994. - B. This drawing is subject to change without notice. - Body dimensions do not include mold flash, interlead flash, protrusions, or gate burrs. Mold flash, interlead flash, protrusions, or gate burrs shall not exceed 0,15 per end or side. - D. JEDEC package registration is pending. # DRL (R-PDSO-N5) #### PLASTIC SMALL OUTLINE NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads. - E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters. - F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations. - G. Side aperture dimensions over—print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening. DBV (R-PDSO-G5) # PLASTIC SMALL-OUTLINE PACKAGE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side. - D. Falls within JEDEC MO-178 Variation AA. # DBV (R-PDSO-G5) # PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad. - D. Publication IPC-7351 is recommended for alternate designs. - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations. #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. #### Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity