
SGLS304A - JUNE 2005 - REVISED JUNE 2008

- Qualified for Automotive Applications
- Complete PWM Power Control Circuitry
- Completely Synchronized Operation
- Internal Undervoltage Lockout Protection
- Wide Supply Voltage Range
- Internal Short-Circuit Protection
- Oscillator Frequency . . . 500 kHz Max
- Variable Dead Time Provides Control Over Total Range
- Internal Regulator Provides a Stable 2.5-V Reference Supply
- Available in Q-Temp Automotive
 HighRel Automotive Applications
 Configuration Control / Print Support
 Qualification to Automotive Standards

description

The TL1451A incorporates on a single monolithic chip all the functions required in the construction of two pulse-width-modulation (PWM) control circuits. Designed primarily for power-supply control, the TL1451A contains an on-chip 2.5-V regulator, two error amplifiers, an adjustable oscillator, two dead-time comparators, undervoltage lockout circuitry, and dual common-emitter output transistor circuits.

The uncommitted output transistors provide common-emitter output capability for each controller. The internal amplifiers exhibit a common-mode voltage range from 1.04 V to 1.45 V. The dead-time control (DTC) comparator has no offset unless externally altered and can provide 0% to 100% dead time. The on-chip oscillator can be operated by terminating RT and CT. During low V_{CC} conditions, the undervoltage lockout control circuit feature locks the outputs off until the internal circuitry is operational.

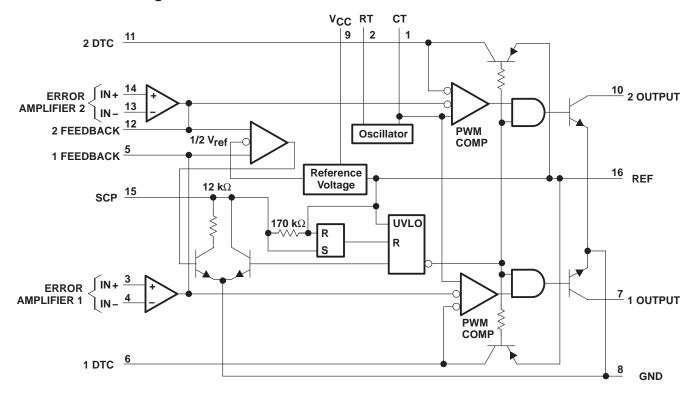
The TL1451A is characterized for operation from -40°C to 125°C.

AVAILABLE OPTIONS†

	PACKAGED DEVICES [‡]
TA	TSSOP (PW)§
-40°C to 125°C	TL1451AQPWRQ1

[†] For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at http://www.ti.com.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



[‡] Package drawings, thermal data, and symbolization are available at http://www.ti.com/packaging.

[§] The PW package is only available left-end taped and reeled.

SGLS304A – JUNE 2005 – REVISED JUNE 2008

functional block diagram

COMPONENT COUNT

Resistors	65
Capacitors	8
Transistors	105
JFETs	18

SGLS304A - JUNE 2005 - REVISED JUNE 2008

absolute maximum ratings over operating free-air temperature range†

Supply voltage, V _{CC}	51 V
Amplifier input voltage, V _I	
Collector output voltage, VO	
Collector output current, IO	21 mA
Continuous power total dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A	–40°C to 125°C
Storage temperature range, T _{stq}	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{\scriptsize A}} \leq 25^{\circ}\mbox{\scriptsize C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
PW	838 mW	6.7 mW/°C	536 mW	436 mW	168 mW

recommended operating conditions

	MIN	MAX	UNIT
Supply voltage, V _{CC}	3.6	50	V
Amplifier input voltage, V _I	1.05	1.45	V
Collector output voltage, VO		50	V
Collector output current, IO		20	mA
Current into feedback terminal		45	μΑ
Feedback resistor, R _F	100		kΩ
Timing capacitor, C _T	150	15000	pF
Timing resistor, R _T	5.1	100	kΩ
Oscillator frequency	1	500	kHz
Operating free-air temperature, T _A	-40	125	°C

SGLS304A – JUNE 2005 – REVISED JUNE 2008

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 6 V, f = 200 kHz (unless otherwise noted)

reference section

24244555	TEGT CONDITIONS		Т			
PARAMETER	TEST CONDIT	IONS	MIN	TYP†	MAX	UNIT
0		T _A = 25°C	2.4	2.5	2.6	
Output voltage (pin 16)	$I_O = 1 \text{ mA}$	T _A = MIN and 125°C	2.35	2.46	2.65	V
Output voltage change with temperature				-0.63%	±4%‡	
		T _A = 25°C		2.0	12.5	
Input voltage regulation	V _{CC} = 3.6 V to 40 V	T _A = 125°C		0.7	15	mV
		T _A = MIN		0.3	30	
		T _A = 25°C		1	7.5	
Output voltage regulation	I _O = 0.1 mA to 1 mA	T _A = 125°C		0.3	14	mV
		$T_A = MIN$		0.3	20	
Short-circuit output current	V _O = 0		3	10	30	mA

[†] All typical values are at T_A = 25°C unless otherwise indicated.

undervoltage lockout section

242445	T-01 00101710110	TL1451AQ			
PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
	T _A = 25°C		2.72		
Upper threshold voltage (VCC)	T _A = 125°C		1.7		V
	$T_A = MIN$		3.15		
Lower threshold voltage (V _{CC})	T _A = 25°C		2.6		
	T _A = 125°C		1.65		V
	$T_A = MIN$		3.09		
	T _A = 25°C	80	120		
Hysteresis (V _{CC})	T _A = 125°C	10	50		mV
	$T_A = MIN$	10	60		
	T _A = 25°C	1.5			
Reset threshold voltage (V _{CC})	T _A = 125°C	0.95			V
	T _A = MIN	1.5			

 $^{^{\}dagger}$ All typical values are at T_A = 25°C unless otherwise indicated.

[‡]These parameters are not production tested.

SGLS304A - JUNE 2005 - REVISED JUNE 2008

short-circuit protection control section

DADAMETED	TEST SOMBITIONS	Т	TL1451AQ			
PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT	
	T _A = 25°C	650	700	750		
Input threshold voltage (SCP)	T _A = 125°C	400	478	650	mV	
	$T_A = MIN$	800	880	950		
Standby voltage (SCP)		140	185	230	mV	
	T _A = 25°C		60	120		
Latched input voltage (SCP)	T _A = 125°C		70	120	mV	
	$T_A = MIN$		60	120		
Equivalent timing resistance			170		kΩ	
Comparator threshold voltage (FEEDBACK)			1.18	·	V	

 $^{^{\}dagger}$ All typical values are at T_A = 25°C unless otherwise indicated.

oscillator section

DADAMETER	TEST SOUR					
PARAMETER	TEST CONDIT	MIN	TYP [†]	MAX	UNIT	
				200		
Frequency	KT = 10 K22	T _A = 125°C		195		kHz
		$T_A = MIN$	19			
Standard deviation of frequency	$C_T = 330 \text{ pF},$	$R_T = 10 \text{ k}\Omega$		2%		
		$T_A = 25^{\circ}C$		1%		
Frequency change with voltage	V _{CC} = 3.6 V to 40 V	T _A = 125°C		1%		
		$T_A = MIN$		3%	_	
Frequency change with temperature				1.37%	±10% [‡]	

[†] All typical values are at T_A = 25°C unless otherwise indicated. ‡ These parameters are not production tested.

dead-time control section

DADAMETED	TEGT COMPLTIONS	TL1451AQ			
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
nput bias current (DTC)	T _A = 25°C			1	A
	T _A = MIN and 125°C			3	μΑ
Latch mode (source) current (DTC)		-80	-145		μΑ
	T _A = 25°C	2.3			
Latched input voltage (DTC)	T _A = 125°C	2.22	2.32		V
	$T_A = MIN$	2.28	2.4		
Input threshold voltage at f = 10 kHz (DTC)	Zero duty cycle		2.05	2.25 [‡]	V
Imput tillestiold voltage at t = 10 km² (DTC)	Maximum duty cycle	1.2 [‡]	1.45		٧

[†] All typical values are at T_A = 25°C unless otherwise indicated. ‡ These parameters are not production tested.

SGLS304A – JUNE 2005 – REVISED JUNE 2008

error-amplifier section

242445752	TEST COMPLETE		ΤL	_1451AQ		
PARAMETER	TEST CONDITIO	ONS	MIN	TYP [†]	MAX	UNIT
		T _A = 25°C			±7	
Input offset voltage	V _O (FEEDBACK) = 1.25 V	T _A = 125°C			±10	mV
		$T_A = MIN$			±12	
		T _A = 25°C			±100	
Input offset current	V _O (FEEDBACK) = 1.25 V	T _A = 125°C			±100	nA
		T _A = MIN			±200	
		T _A = 25°C		160	500	
Input bias current	VO (FEEDBACK) = 1.25 V	T _A = 125°C		100	500	nA
		T _A = MIN		142	700	
Common-mode input voltage range	V _{CC} = 3.6 V to 40 V		1.05 to 1.45			V
		T _A = 25°C	70	80		
Open-loop voltage amplification	$R_F = 200 \text{ k}\Omega$	T _A = 125°C	70	80		dB
		$T_A = MIN$	64	80		
Unity-gain bandwidth				1.5		MHz
Common-mode rejection ratio			60	80		dB
Positive output voltage swing			2			V
Negative output voltage swing					1	V
		T _A = 25°C	0.5	1.6		
Output (sink) current (FEEDBACK)	$V_{ID} = -0.1 \text{ V}, V_{O} = 1.25 \text{ V}$	T _A = 125°C	0.4	1.8		mA
		$T_A = MIN$	0.3	1.7		
		T _A = 25°C	-45	-70		
Output (source) current (FEEDBACK)	$V_{ID} = 0.1 \text{ V}, V_{O} = 1.25 \text{ V}$	T _A = 125°C	-25	-50		μΑ
		T _A = MIN	-15	-70		

 $^{^{\}dagger}$ All typical values are at TA = 25 $^{\circ}$ C unless otherwise indicated.

output section

242445	TEST SOMETIONS	TL1451AQ			
PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
Collector off-state current	V _O = 50 V			10	μА
Output saturation voltage	T _A = 25°C		1.2	2	
	T _A = 125°C		1.6	2.4	V
	$T_A = MIN$		1.36	2.2	
Short-circuit output current	V _O = 6 V		90		mA

[†] All typical values are at T_A = 25°C unless otherwise indicated.

pwm comparator section

	DADAMETER	TEST CONDITIONS	TI			
	PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
In no. of the	Input threehold voltage at f = 10 kHz (EEEDDACK)	Zero duty cycle		2.05	2.25‡	V
	Input threshold voltage at f = 10 kHz (FEEDBACK)	Maximum duty cycle	1.2 [‡]	1.45		v

[†] All typical values are at T_A = 25°C unless otherwise indicated. ‡ These parameters are not production tested.

SGLS304A - JUNE 2005 - REVISED JUNE 2008

total device

PARAMETER	TEST CONDITIONS	T	UNIT		
PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
Standby supply current	Off-state		1.3	1.8	mA
Average supply current	$R_T = 10 \text{ k}\Omega$		1.7	2.4	mA

[†] All typical values are at $T_A = 25$ °C unless otherwise indicated.

PARAMETER MEASUREMENT INFORMATION

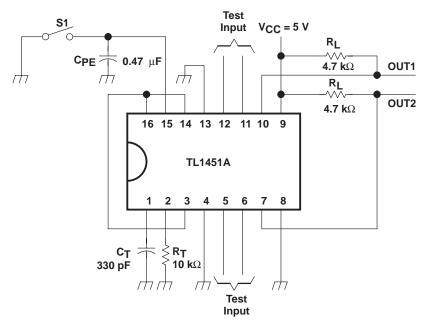
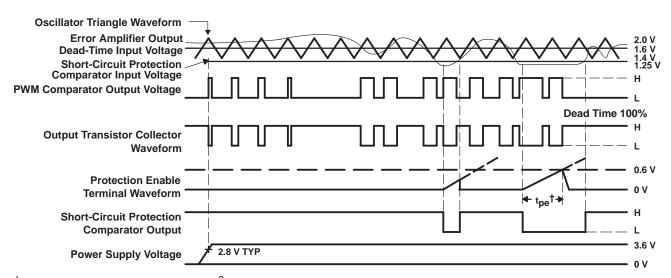



Figure 1. Test Circuit

† Protection Enable Time, $t_{pe} = (0.051 \text{ x } 10^6 \text{ x } C_{pe})$ in seconds

Figure 2. TL1451A Timing Diagram

TRIANGLE OSCILLATOR FREQUENCY vs

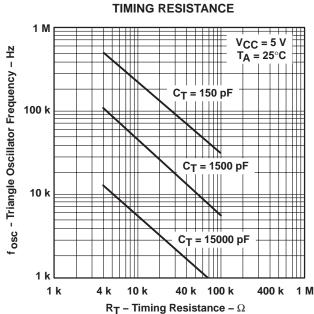


Figure 3

TRIANGLE WAVEFORM SWING VOLTAGE

Figure 5

OSCILLATOR FREQUENCY VARIATION vs

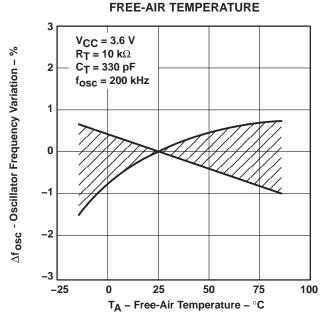


Figure 4

TRIANGLE WAVEFORM PERIOD

TIMING CAPACITANCE

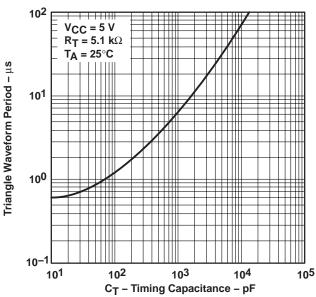


Figure 6

REFERENCE OUTPUT VOLTAGE VARIATION

FREE-AIR TEMPERATURE

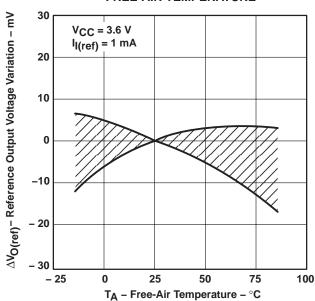


Figure 7

REFERENCE OUTPUT VOLTAGE VARIATION vs FREE-AIR TEMPERATURE



Figure 8

REFERENCE OUTPUT VOLTAGE

vs SUPPLY VOLTAGE

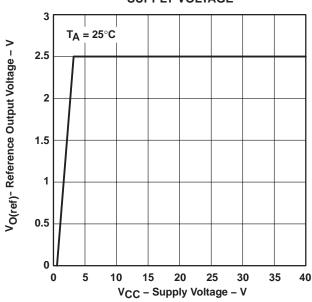


Figure 9

DROPOUT VOLTAGE VARIATION

FREE-TEMPERATURE

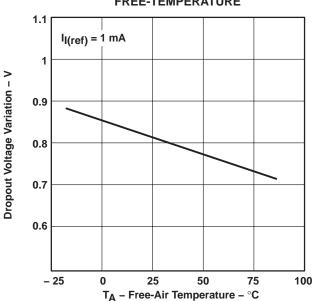
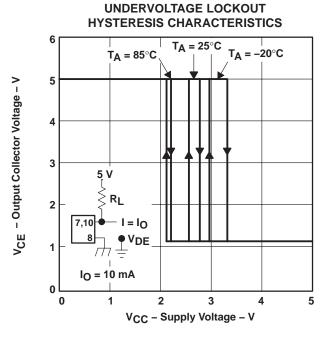



Figure 10

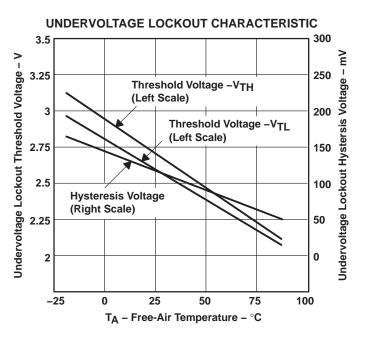


Figure 11

Figure 12

SHORT-CIRCUIT PROTECTION CHARACTERISTICS

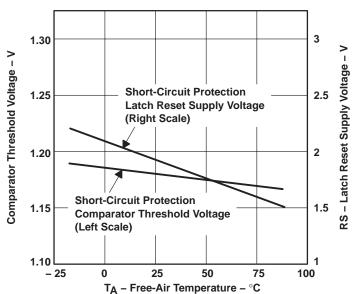


Figure 13

PROTECTION ENABLE TIME vs

PROTECTION ENABLE CAPACITANCE 18 15 19 9 0 50 100 150 200 250 CPE – Protection Enable Capacitance – µF

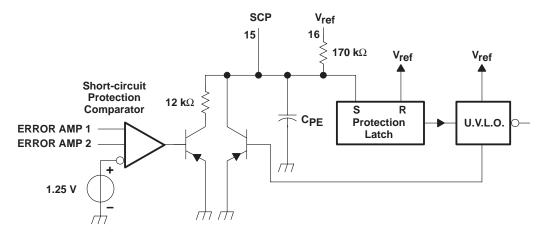
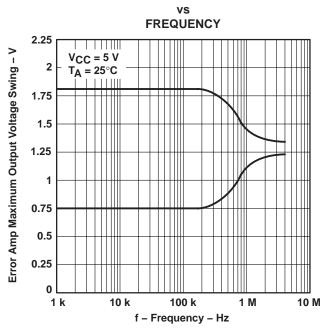



Figure 14

ERROR AMP MAXIMUM OUTPUT VOLTAGE SWING

OPEN-LOOP VOLTAGE AMPLIFICATION

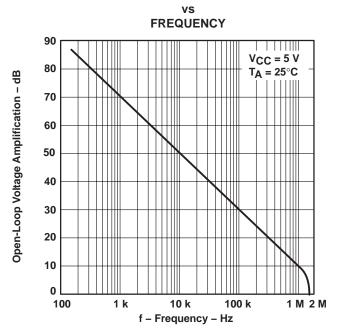


Figure 15

Figure 16

GAIN (AMPLIFIER IN UNITY-GAIN CONFIGURATION)

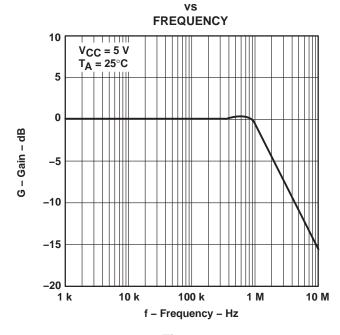
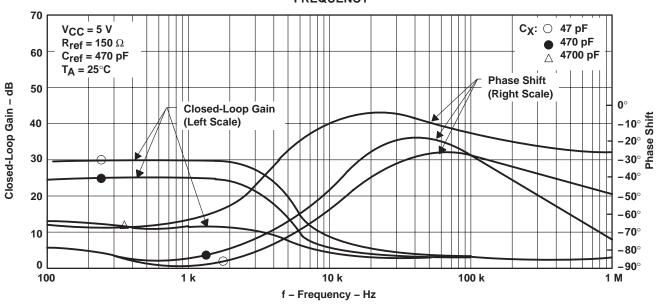



Figure 17

CLOSED-LOOP GAIN AND PHASE SHIFT

FREQUENCY

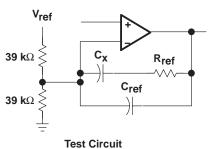


Figure 18

CLOSED-LOOP GAIN AND PHASE SHIFT

FREQUENCY 70 V_CC = 5 V C_X: ○ 47 pF R_{ref} = 15 Ω • 470 pF 60 $C_{ref} = 470 pF$ △ 4700 pF T_A = 25°C **Phase Shift** Closed-Loop Gain - dB 50 (Right Scale) **Closed-Loop Gain** -10° 01--20° -30° -40 (Left Scale) 30 -40° 20 -50° -60° $\boldsymbol{-70^{\circ}}$ 10 -80° 0 -90° 100 1 k 10 k 100 k 1 M f - Frequency - Hz

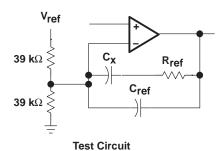
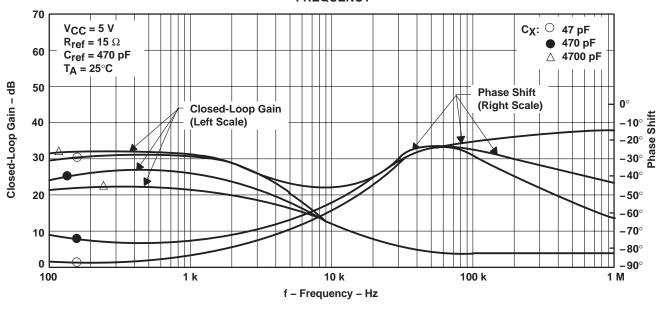



Figure 19

CLOSED-LOOP GAIN AND PHASE SHIFT

FREQUENCY

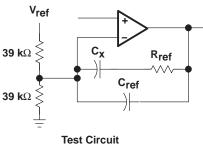
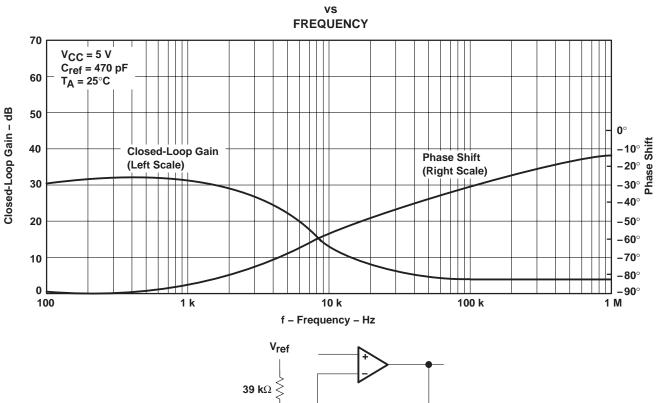



Figure 20

CLOSED-LOOP GAIN AND PHASE SHIFT

Test Circuit

 \mathbf{c}_{ref}

Figure 21

39 kΩ ≶

OUTPUT SINK CURRENT

COLLECTOR OUTPUT SATURATION VOLTAGE

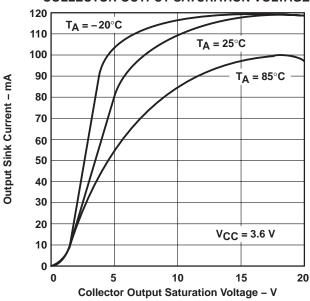


Figure 22

MAXIMUM OUTPUT VOLTAGE SWING

VS

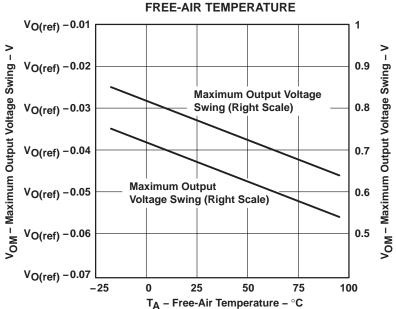
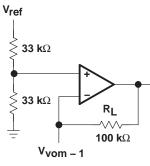



Figure 23

 $V_{CC} = 3.6 \text{ V}$ $R_L = 100 \text{ k}\Omega$ $V_{OM+1} = 1.25 \text{ V}$ $V_{OM} = 1 = 1.15 \text{ V}$ (Right Scale) $V_{OM} = 1 = 1.35 \text{ V}$ (Left Scale)

TEST CIRCUIT

OUTPUT TRANSISTOR ON DUTY CYCLE DEAD-TIME INPUT VOLTAGE 0 $V_{CC} = 3.6 V$ 10 $R_T = 10k\Omega$ Output Transistor "On" Duty Cycle - % $C_T = 330 pF$ 20 30 40 50 60 70 90 100 0.5 2 3.5 Dead-Time Input Voltage - V

Figure 24

STANDBY CURRENT FREE-AIR TEMPERATURE **Average Supply Current** 2 $V_{CC} = 6 \text{ V}, R_T = 10 \text{ k}\Omega,$ $C_{T} = 330 \text{ pF}$ 1.75 ICC - Supply Current - mA 1.5 Stand-By Current, V_{CC} = 40 V, No Load 1.25 Stand-By Current, V_{CC} = 3.6 V, No Load 1 0.75 0.5 0.25 0 -25 100 T_A - Free-Air Temperature - °C Figure 26

0

0

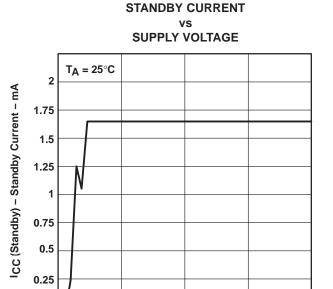


Figure 25

MAXIMUM CONTINUOUS POWER DISSIPATION vs

20

V_{CC} - Supply Voltage - V

40

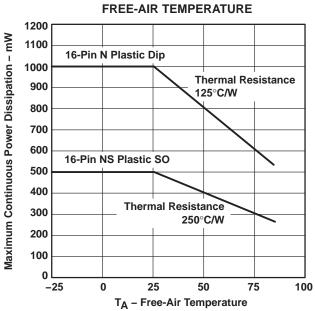
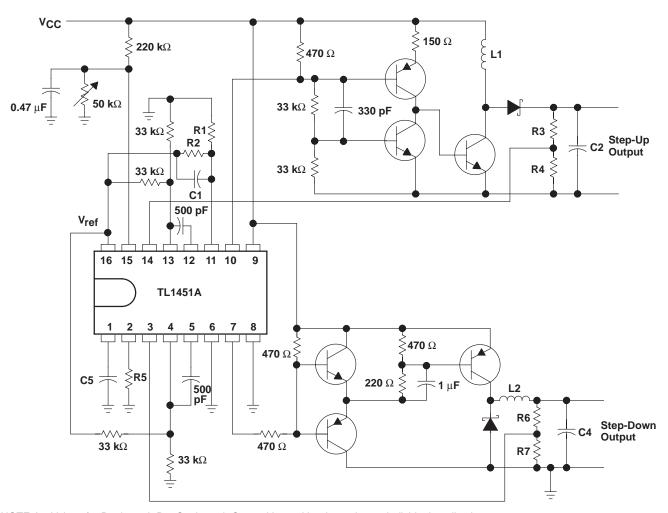



Figure 27

SGLS304A - JUNE 2005 - REVISED JUNE 2008

APPLICATION INFORMATION

NOTE A: Values for R1 through R7, C1 through C4, and L1 and L2 depend upon individual application.

Figure 28. High-Speed Dual Switching Regulator

11-Apr-2013

PACKAGING INFORMATION

Orderable Device		Package Type	Package Drawing	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
TL1451AQPWRG4Q1	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	1451AQ	Samples
TL1451AQPWRQ1	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	1451AQ	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TL1451A-Q1:

PACKAGE OPTION ADDENDUM

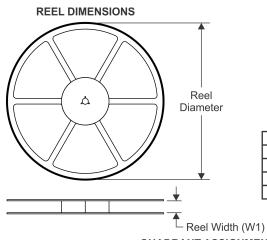
11-Apr-2013

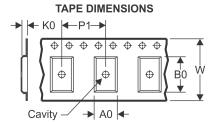
● Enhanced Product: TL1451A-EP

• Military: TL1451AM

NOTE: Qualified Version Definitions:

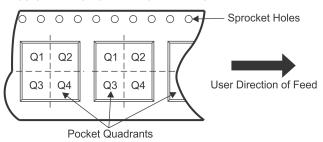
• Catalog - TI's standard catalog product


• Enhanced Product - Supports Defense, Aerospace and Medical Applications


• Military - QML certified for Military and Defense Applications

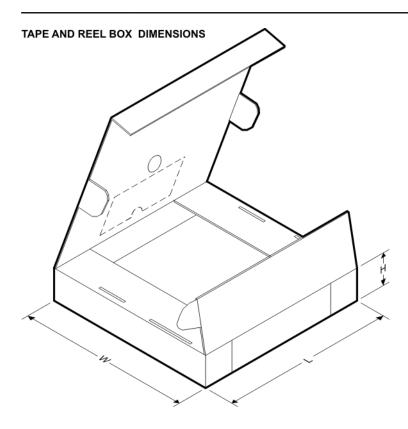
PACKAGE MATERIALS INFORMATION

www.ti.com 14-Mar-2013


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

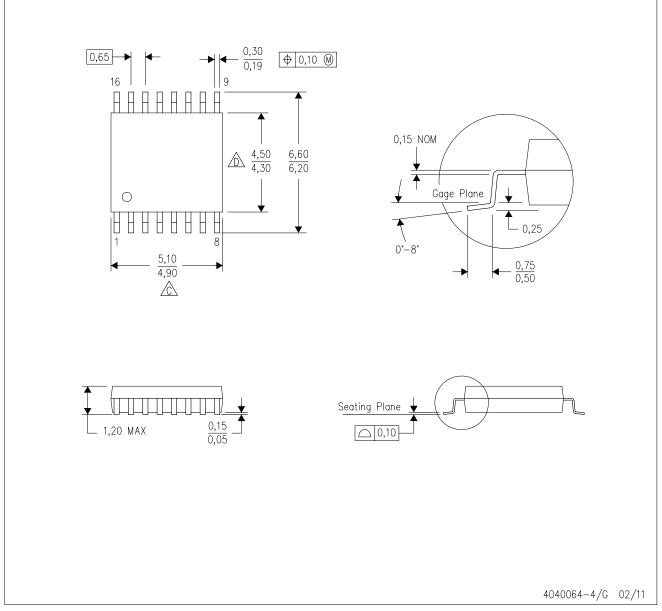


*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TL1451AQPWRG4Q1	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TL1451AQPWRQ1	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 14-Mar-2013

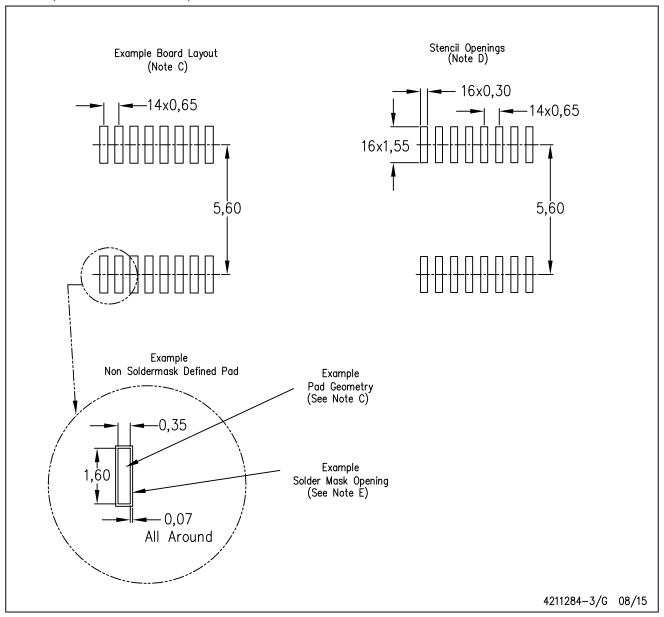


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TL1451AQPWRG4Q1	TSSOP	PW	16	2000	367.0	367.0	35.0
TL1451AQPWRQ1	TSSOP	PW	16	2000	367.0	367.0	35.0

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity