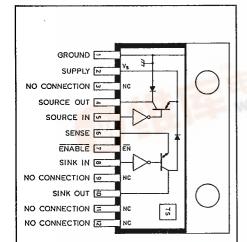
ALLEGRO MICR 医乳中性内侧中侧应商 0504338捷**多即0.5**\$盛**5**CB**?**T# L,GP小时加急出货 33E D

HIGH-CURRENT HALF-BRIDGE POWER DRIVER

The UDN2955W-2 half-bridge power driver combines a highcurrent, half-bridge power driver with low-level control and protection circuitry. For PWM applications there are provisions for output current sensing and an ENABLE (active low) input. The output can source or sink up to 6 A continuously. This device features a minimum breakdown and sustaining voltage of 40 V. It can be used in pairs for fullbridge operation or in triplets for 3-phase brushless dc motors.

Protection is included which shuts down the device during overtemperature conditions caused by loss of cooling; internal flyback and clamp diodes are included for switching inductive loads. Internal logic lockout and delays prevent potentially destructive crossover currents. The logic inputs are compatible with TTL and 5 V CMOS logic systems.


A similar device, excluding the ENABLE and output current sensing provision, in a 5-lead TO-220 style package, is the UDN2951Z-2.

The UDN2955W-2 is supplied in a 12-lead power-tab single in-line plastic package. The tab is at ground potential, allowing multiple devices to share a common heat sink.

FEATURES

Dwg. PP-023

- ± 6 A Continuous Output Current
- Output Voltage to 40 V
- Internal Thermal Shutdown
- TTL and 5 V CMOS Compatible Inputs
- Integral Transient-Suppression Diodes

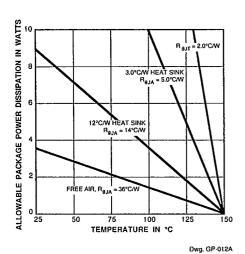
ABSOLUTE MAXIMUM RATINGS at $T_1 \le 150^{\circ}C$

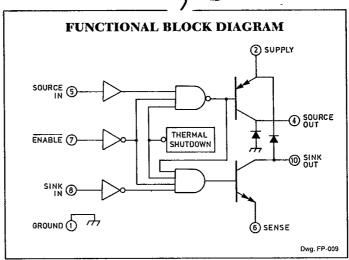
Supply Voltage, V _S 40 V
Output Current, I _{OUT} ±6.0 A
Input Voltage, V _{IN}
Sense Voltage, V _{SENSE}
Package Power Dissipation,
P _D See Graph
Operating Temperature Bange

Operating Temperature Range, T_A -20°C to + 85°C

Storage Temperature Range,

T_S -55°C to + 150°C

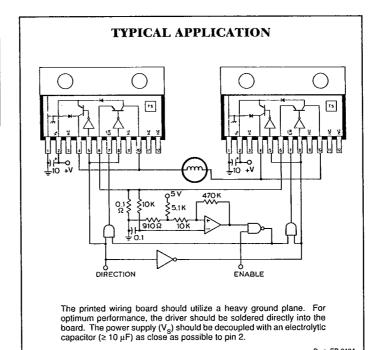

Output current rating may be limited by duty cycle, ambient temperature, and heat sinking. Under any set of conditions, do not exceed the specified output current rating or a junction temperature of +150°C.


Always order by complete part number: UDN2955W-2

2955-2 Mean Cantharacharman Bridealacamaradhanar

The second secon

33E D



TRUTH TABLE

INPUTS			OUTPUTS			
ENABLE	SOURCE	SINK	SOURCE	SINK		
Low	Low	Low	OFF	ON		
Low	Low	Hìgh	OFF	OFF		
Low	High	Χ	ON	OFF		
High	Х	Х	OFF	OFF		

X = Irrelevant

THE CONTROLLED THE PROPERTY OF THE CONTROL OF THE C

ELECTRICAL CHARACTERISTICS at $T_A = +25^{\circ}C$, $T_J \le +150^{\circ}C$, $V_S = 40 \text{ V}$

	Symbol		Limits			
Characteristic		Test Conditions	Min.	Тур.	Max.	Units
Functional Supply Range	V _s		10	_	40	V
Output Leakage Current	I _{CEX}	SINK _{OUT} = 40 V,				
		SOURCE _{IN} = 0.8 V, SINK _{IN} = 2.0 V	-	<1.0	50	μА
		SOURCE _{OUT} = 0 V,				
		SOURCE _{IN} = 0.8 V, SINK _{IN} = 2.0 V		<-1.0	- 50	μА
Output Sustaining Voltage	V _{CE(sus)}	I _{OUT} = ± 6.0 A, L =10 mH	40	_	_	٧
Output Saturation Voltage	V _{CE(SAT)}	SINK _{OUT} = 5.0 A		_	1.5	٧
		SINK _{OUT} = 6.0 A	_		2.0	V
		SOURCE _{OUT} = -5.0 A	_		2.0	V
		SOURCE _{OUT} = -6.0 A	_	_	2.5	V
Input Voltage	Logic 1	SOURCE _{IN} or SINK _{IN}	2.0	_		V
	Logic 0	SOURCE _{IN} or SINK _{IN}	-	_	0.8	V
Input Current	Logic 1	SOURCE _{IN} or SINK _{IN} = 2.0 V		3.0	10	μА
	Logic 0	SOURCE _{IN} or SINK _{IN} = 0.8 V		-1.0	-10	μА
Propagation Delay	t _{PHL}	Sink Driver (includes Turn-On Delay)		2.5		μѕ
		Source Driver	<u> </u>	2.5		μs
	t _{PLH}	Sink Driver	_	0.2		μs
		Source Driver (includes Turn-On Delay)	—	2.5	_	μs
Supply Current	I _{S(ON)}	SOURCE _{IN} = 2.0 V		10	15	mA
		SOURCE _{IN} = SINK _{IN} = 0.8 V		20	25	mA
	I _{S(OFF)}	SOURCE _{IN} = 0.8 V, SINK _{IN} = 2.0 V		8.0	10	mA
Flyback Diode Forward Voltage	V _F	I _F = 6.0 A	+		2.8	V
Clamp Diode Forward Voltage	V _F	I _E = 6.0 A	+		2.1	V
Diode Leakage Current	I _R	Each Diode, V _B = 40 V		<1.0	50	μА
	- n	Н				L,

NOTE: Typical Data is given for circuit design information only.

Negative current is defined as coming out of (sourcing) the specified device pin.