捷多邦,专业PCB打样工厂,24小时**50月46/CH16652A 16-BIT BUS TRANSCEIVER AND REGISTER** WITH 3-STATE OUTPUTS

SCAS319G - NOVEMBER 1993 - REVISED JUNE 1998

- Member of the Texas Instruments Widebus™ Family
- **EPIC** ™ (Enhanced-Performance Implanted **CMOS) Submicron Process**
- Typical V_{OLP} (Output Ground Bounce) $< 0.8 \text{ V at V}_{CC} = 3.3 \text{ V}, T_A = 25^{\circ}\text{C}$
- Typical V_{OHV} (Output V_{OH} Undershoot) $> 2 V at V_{CC} = 3.3 V, T_A = 25^{\circ}C$
- Power Off Disables Outputs, Permitting Live Insertion
- Supports Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With 3.3-V V_{CC})
- **ESD Protection Exceeds 2000 V Per** MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 250 mA Per **JESD 17**
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages

description

This 16-bit bus transceiver and register is designed for 1.65-V to 3.6-V V_{CC} operation.

The SN74LVCH16652A consists of D-type flip-flops and control circuitry arranged for multiplexed transmission of data directly from the data bus or from the internal storage registers. The device can be used as two 8-bit transceivers or one 16-bit transceiver.

DGG OR DL PACKAGE (TOP VIEW)

10EAB	1	U	56	h	1OEBA
CLKAB	2		55		1CLKBA
1SAB	3			ā	1SBA
GND [4		53	6	GND
1A1 [5		52	þ	1B1
1A2 [6		51		1B2
V _{CC} [7		50		V_{CC}
1A3 [8		49		1B3
1A4 [9		48	_	1B4
1A5 [10				1B5
GND [11				GND
1A6 [12		45		1B6
1A7 [13		44		1B7
1A8 [14			_	1B8
2A1 [15		42		2B1
2A2 [16		41	_	2B2
2A3 [17		40		2B3
GND [18		39	_	GND
2A4 [19		38		2B4
2A5 [20		37	_	2B5
2A6 [21		36	_	2B6
V _{CC} [22		35	0	V _{CC}
2A7 [23		34	0	2B7
2A8	24		33		2B8
GND [25		32	0	GND
2SAB	26		31	[2SBA
CLKAB [27		30	[2CLKBA
20EAB [28		29		2OEBA

Complementary output-enable (OEAB and OEBA) inputs control the transceiver functions. Select-control (SAB and SBA) inputs select whether real-time or stored data is transferred. A low input level selects real-time data, and a high input level selects stored data. The circuitry used for select control eliminates the typical decoding glitch that occurs in a multiplexer during the transition between stored and real-time data. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the SN74LVCH16652A.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

and Widebus are trademarks of Texas Instruments Incorporated.

SN74LVCH16652A 16-BIT BUS TRANSCEIVER AND REGISTER WITH 3-STATE OUTPUTS

SCAS319G - NOVEMBER 1993 - REVISED JUNE 1998

description (continued)

Data on the A or B bus, or both, can be stored in the internal D flip-flops by low-to-high transitions at the appropriate clock (CLKAB or CLKBA) inputs regardless of the levels on the select-control or output-enable inputs. When SAB and SBA are in the real-time transfer mode, it is also possible to store data without using the internal D-type flip-flops by simultaneously enabling OEAB and \overline{OEBA} . In this configuration, each output reinforces its input. When all other data sources to the two sets of bus lines are at high impedance, each set of bus lines remains at its last level configuration.

To ensure the high-impedance state during power up or power down, $\overline{\text{OEBA}}$ should be tied to V_{CC} through a pullup resistor and OEAB should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sinking/current-sourcing capability of the driver.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

Active bus-hold circuitry holds unused or floating data inputs at a valid logic level.

The SN74LVCH16652A is characterized for operation from -40°C to 85°C.

FUNCTION TABLE

		INP	UTS			DATA	A 1/0†	OPERATION OR FUNCTION
OEAB	OEBA	CLKAB	CLKBA	SAB	SBA	A1-A8	B1-B8	OPERATION OR FUNCTION
L	Н	H or L	H or L	Х	Х	Input	Input	Isolation
L	Н	\uparrow	\uparrow	Χ	Χ	Input	Input	Store A and B data
Х	Н	↑	H or L	Х	Х	Input	Unspecified [‡]	Store A, hold B
Н	Н	\uparrow	\uparrow	X [‡]	Х	Input	Output	Store A in both registers
L	Х	H or L	↑	Х	Х	Unspecified [‡]	Input	Hold A, store B
L	L	\uparrow	\uparrow	X	X‡	Output	Input	Store B in both registers
L	L	Χ	Х	Х	L	Output	Input	Real-time B data to A bus
L	L	Χ	H or L	Χ	Н	Output	Input	Stored B data to A bus
Н	Н	Х	Х	L	Х	Input	Output	Real-time A data to B bus
Н	Н	H or L	Χ	Н	Х	Input	Output	Stored A data to B bus
Н	L	H or L	H or L	Н	Н	Output	Output	Stored A data to B bus and stored B data to A bus

[†] The data-output functions may be enabled or disabled by a variety of level combinations at OEAB or OEBA. Data-input functions always are enabled; i.e., data at the bus terminals is stored on every low-to-high transition of the clock inputs.

Select control = H; clocks must be staggered to load both registers.

[‡] Select control = L; clocks can occur simultaneously.

SN74LVCH16652A 16-BIT BUS TRANSCEIVER AND REGISTER WITH 3-STATE OUTPUTS

SCAS319G - NOVEMBER 1993 - REVISED JUNE 1998

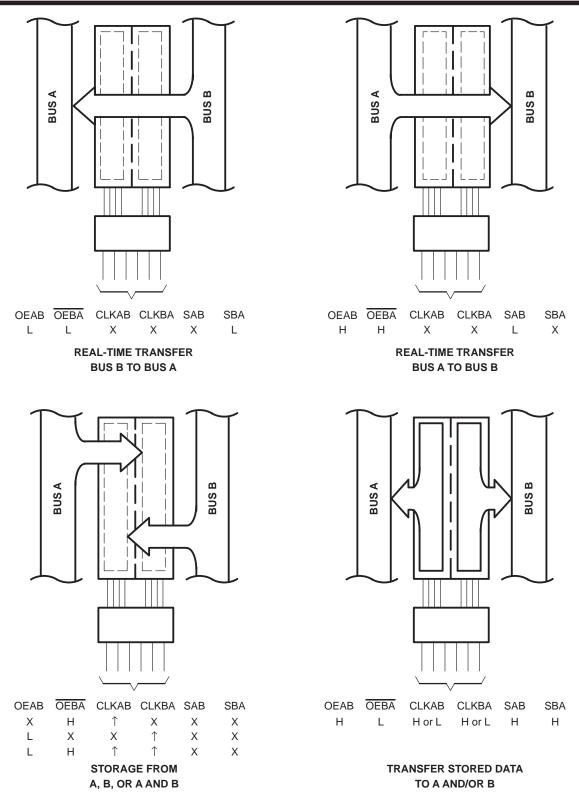
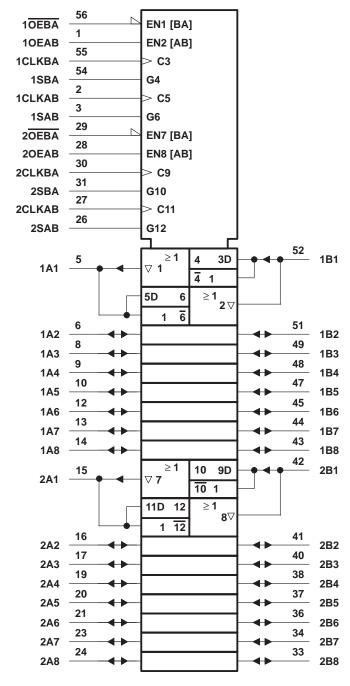
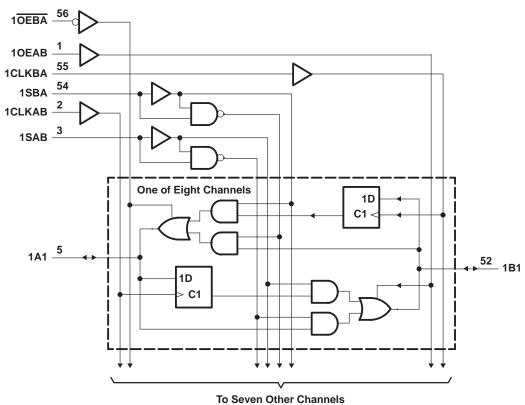



Figure 1. Bus-Management Functions


logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

2OEBA 29 20EAB 28 2CLKBA 30 2SBA 31 2CLKAB 27 One of Eight Channels 1D 2A1 _____ <mark>-42</mark> 2B1 > C1

To Seven Other Channels

SN74LVCH16652A 16-BIT BUS TRANSCEIVER AND REGISTER WITH 3-STATE OUTPUTS

SCAS319G - NOVEMBER 1993 - REVISED JUNE 1998

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5 V to 6.5 V
Input voltage range, V _I : (see Note 1)	
Voltage range applied to any output in the high-impedance or power-off state, VO	
(see Note 1)	–0.5 V to 6.5 V
Voltage range applied to any output in the high or low state, VO	
(see Notes 1 and 2)	\dots -0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, I _O	±50 mA
Continuous current through V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 3): DGG package	81°C/W
DL package	74°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

- 2. The value of V_{CC} is provided in the recommended operating conditions table.
- 3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT	
\/00	Cupply voltage	Operating	1.65	3.6	V	
VCC	Supply voltage	Data retention only	1.5		V	
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	0.65 × V _{CC}			
\vee_{IH}	High-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		V	
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2			
		V _{CC} = 1.65 V to 1.95 V		0.35 × V _{CC}		
V _{IL}	Low-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V	
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8		
٧ _I	Input voltage	•	0	5.5	V	
٧o	Output voltage	High or low state	0	VCC	V	
		3 state	0	5.5	V	
	High-level output current	V _{CC} = 1.65 V		-4		
la		V _{CC} = 2.3 V		-8	mA	
IOH		V _{CC} = 2.7 V		-12	mA	
		V _{CC} = 3 V		-24		
lOL	Low-level output current	V _{CC} = 1.65 V		4		
		V _{CC} = 2.3 V		8	A	
		$V_{CC} = 2.7 \text{ V}$		12	mA	
		V _{CC} = 3 V		24		
Δt/Δν	Input transition rise or fall rate		0	10	ns/V	
TA	Operating free-air temperature		-40	85	°C	

NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN74LVCH16652A **16-BIT BUS TRANSCEIVER AND REGISTER** WITH 3-STATE OUTPUTS SCAS319G - NOVEMBER 1993 - REVISED JUNE 1998

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

$V_{OH} \begin{tabular}{lllllllllllllllllllllllllllllllllll$		
$V_{OH} + V_{OH} + V$		
VOH OH OH 2.7 V 2.2 3 V 2.4 3 V 2.2 IOH = -24 mA 3 V 2.2 IOL = 100 μA 1.65 V to 3.6 V 0.2 IOL = 4 mA 1.65 V 0.45 IOL = 12 mA 2.7 V 0.4 IOL = 24 mA 3 V 0.55 II Control inputs V = 0.58 V ±5 V = 0.58 V 1.65 V ± V = 0.7 V ± V = 0.7 V ± V = 0.7 V ± V = 0.8 V 3 V -45 V = 0.8 V 3 V -75 V = 0 to 3.6 V§ 3.6 V ±500		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\ _\	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	v	
$V_{OL} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		
$V_{OL} \begin{tabular}{l l l l l l l l l l l l l l l l l l l $		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{ c c c c c } \hline I_{OL} = 24 \text{ mA} & 3 \text{ V} & 0.55 \\ \hline I_{I} & \text{Control inputs} & V_{I} = 0 \text{ to } 5.5 \text{ V} & 3.6 \text{ V} & \pm 5 \\ \hline \\ I_{I(hold)} & V_{I} = 0.58 \text{ V} & & & & & \\ \hline \\ V_{I} = 1.07 \text{ V} & & & & & \\ \hline \\ V_{I} = 0.7 \text{ V} & & & & \\ \hline \\ V_{I} = 1.7 \text{ V} & & & & \\ \hline \\ V_{I} = 0.8 \text{ V} & & & \\ \hline \\ V_{I} = 2 \text{ V} & & & \\ \hline \\ \hline \\ V_{I} = 0 \text{ to } 3.6 \text{ V} & & \\ \hline \\ \hline$	V	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \text{I}_{\text{I(hold)}} \text{ A or B ports} \begin{array}{c} \text{V}_{\text{I}} = 0.58 \text{V} \\ \text{V}_{\text{I}} = 1.07 \text{V} \\ \text{V}_{\text{I}} = 0.7 \text{V} \\ \text{V}_{\text{I}} = 0.7 \text{V} \\ \text{V}_{\text{I}} = 1.7 \text{V} \\ \text{V}_{\text{I}} = 0.8 \text{V} \\ \text{V}_{\text{I}} = 2 \text{V} \\ \text{V}_{\text{I}} = 2 \text{V} \\ \text{V}_{\text{I}} = 0 \text{to} 3.6 \text{V} \\ \end{array} \begin{array}{c} \text{\pm} \\ \text{\pm}$		
$I_{\text{I(hold)}} \text{ A or B ports} \begin{array}{c} V_{\text{I}} = 1.07 \text{V} \\ \hline V_{\text{I}} = 0.7 \text{V} \\ \hline V_{\text{I}} = 1.7 \text{V} \\ \hline V_{\text{I}} = 1.7 \text{V} \\ \hline V_{\text{I}} = 0.8 \text{V} \\ \hline V_{\text{I}} = 2 \text{V} \\ \hline V_{\text{I}} = 0 \text{to} 3.6 \text{V} \\ \hline \end{array} \begin{array}{c} 1.65 \text{V} \\ \hline 2.3 \text{V} \\ \hline -45 \\ \hline -75 \\ \hline -75 \\ \hline \end{array}$	μΑ	
$ \text{I}_{\text{I(hold)}} \text{ A or B ports} \begin{array}{c} V_{\text{I}} = 1.07 \text{V} \\ \hline V_{\text{I}} = 0.7 \text{V} \\ \hline V_{\text{I}} = 1.7 \text{V} \\ \hline V_{\text{I}} = 1.7 \text{V} \\ \hline V_{\text{I}} = 0.8 \text{V} \\ \hline V_{\text{I}} = 2 \text{V} \\ \hline V_{\text{I}} = 0 \text{ to } 3.6 \text{V} \\ \hline \end{array} \begin{array}{c} 2.3 \text{V} \\ \hline 2.3 \text{V} \\ \hline -45 \\ \hline -75 \\ \hline -75 \\ \hline \end{array} $		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	μΑ	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
140 V or Vo = 5 5 V		
I_{Off} $V_{\text{I}} \text{ or } V_{\text{O}} = 5.5 \text{ V}$ 0 ± 10	μΑ	
I_{OZ} ¶ $V_{O} = 0 \text{ to } 5.5 \text{ V}$ ± 10	μΑ	
$V_{I} = V_{CC}$ or GND $V_{I} = V_{CC}$ or GND $V_{I} = V_{CC}$		
ICC $3.6 \text{ V} \le \text{V}_1 \le 5.5 \text{ V}^{\#}$ $10 = 0$ 3.6 V	μA 0	
	μА	
C_i Control inputs $V_I = V_{CC}$ or GND 3.3 V 5	pF	
C_{io} A or B ports $V_O = V_{CC}$ or GND 3.3 V 8	pF	

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figures 2 through 4)

			1.8 V 5 V	VCC =		V _{CC} =	2.7 V	V _{CC} =	3.3 V 3 V	UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
fclock	Clock frequency		‡		‡		150		150	MHz
t _W	Pulse duration, CLK high or low	‡		‡		3.3		3.3		ns
t _{su}	Setup time, A or B before CLKAB↑ or CLKBA↑	‡		‡		3.4		3		ns
th	Hold time, A or B after CLKAB↑ or CLKBA↑	‡		‡		0		0.2		ns

[‡] This information was not available at the time of publication.

[‡] This information was not available at the time of publication.

[§] This is the bus-hold maximum dynamic current required to switch the input from one state to another.

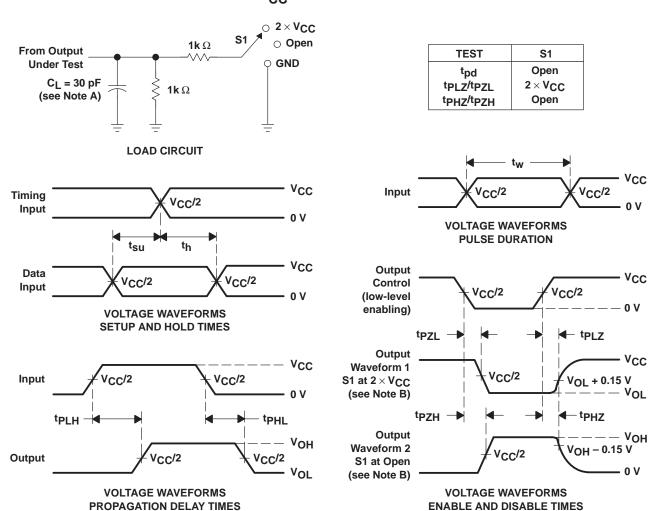
[¶] For I/O ports, the parameter IOZ includes the input leakage current, but not I_I(hold).

[#]This applies in the disabled state only.

SN74LVCH16652A **16-BIT BUS TRANSCEIVER AND REGISTER** WITH 3-STATE OUTPUTS SCAS319G - NOVEMBER 1993 - REVISED JUNE 1998

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 2 through 4)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} =		V _{CC} =	2.5 V 2 V	V _{CC} =	2.7 V	V _{CC} =	3.3 V 3 V	UNIT
	(INPOT)	(001701)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
f _{max}			†		†		150		150		MHz
	A or B	B or A	†	†	†	†		6.4	1.4	6.3	
^t pd	CLKAB or CLKBA	A or B	†	†	†	†		7.3	2.4	6.4	ns
	SAB or SBA	B or A	†	†	†	†		8.8	1.9	7.4	
t _{en}	OE or OE	A or B	†	†	†	†		6.6	1.6	6.3	ns
^t dis	OE or OE	A or B	†	†	†	†		6.6	1.2	6.2	ns

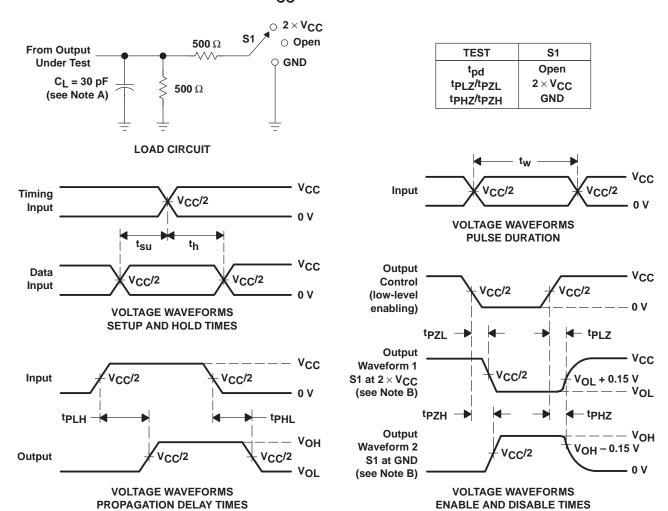

[†]This information was not available at the time of publication.

operating characteristics, $T_A = 25^{\circ}C$

	PARAMETER		TEST CONDITIONS	V _{CC} = 1.8 V ± 0.15 V	V _{CC} = 2.5 V ± 0.2 V	V _{CC} = 3.3 V ± 0.3 V	UNIT
			CONDITIONS	TYP	TYP	TYP	
Const	Power dissipation capacitance	Outputs enabled	f 40 MH=	†	†	55	pF
C _{pd}	per transceiver	Outputs disabled	f = 10 MHz	†	†	12	рг

[†] This information was not available at the time of publication.

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}$

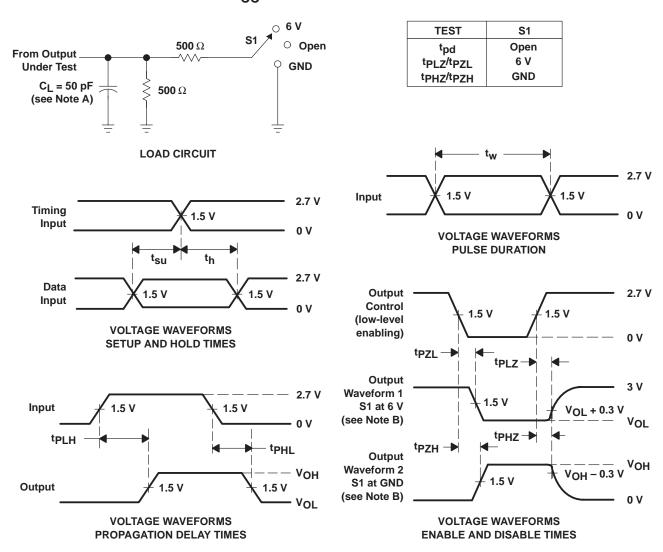


NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_f \leq$ 2 ns, $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLZ and tpHZ are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tplH and tpHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$



NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \Omega$, $t_f \leq$ 2 ns, $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. tpLH and tpHL are the same as tpd.

Figure 3. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.7 V AND 3.3 V \pm 0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , $t_r \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. tpzL and tpzH are the same as ten.
- G. tplH and tpHL are the same as tpd.

Figure 4. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated