SLOS070C - JULY 1979 - REVISED SEPTEMBER 2004

- Equivalent Input Noise Voltage . . .
 3.5 nVI√Hz Typ
- Unity-Gain Bandwidth . . . 10 MHz Typ
- Common-Mode Rejection Ratio . . .100 dB Typ
- High DC Voltage Gain . . . 100 V/mV Typ
- Peak-to-Peak Output Voltage Swing
 32 V Typ With V_{CC±} = ±18 V and R_L = 600 Ω
- High Slew Rate . . . 13 V/μs Typ
- Wide Supply-Voltage Range ±3 V to ±20 V
- Low Harmonic Distortion
- Offset Nulling Capability
- External Compensation Capability

description/ordering information

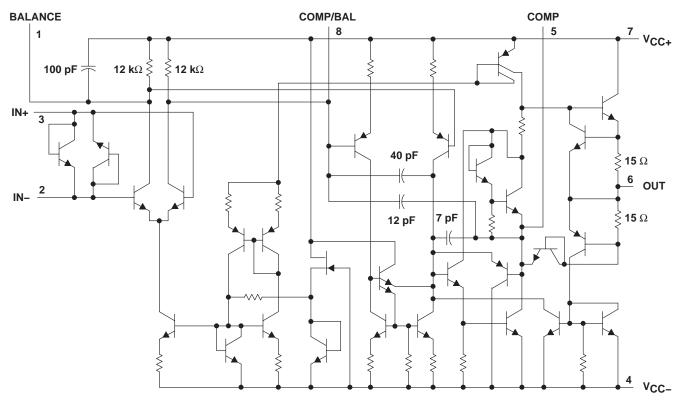
The NE5534, NE5534A, SA5534, and SA5534A are high-performance operational amplifiers combining excellent dc and ac characteristics. Some of the features include very low noise, high output-drive capability, high unity-gain and maximum-output-swing bandwidths, low distortion, and high slew rate.

These operational amplifiers are compensated internally for a gain equal to or greater than three. Optimization of the frequency response for various applications can be obtained by use of an external compensation capacitor between COMP and COMP/BAL. The devices feature input-protection diodes, output short-circuit protection, and offset-voltage nulling capability with use of the BALANCE and COMP/BAL pins (see the application circuit diagram).

For the NE5534A and SA5534A, a maximum limit is specified for the equivalent input noise voltage.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLOS070C - JULY 1979 - REVISED SEPTEMBER 2004

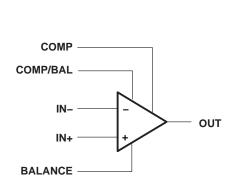

description/ordering information (continued)

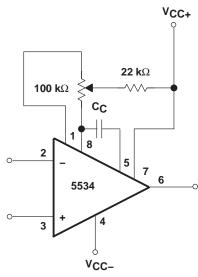
ORDERING INFORMATION

TA	V _{IO} max AT 25°C	PACKA	GE [†]	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
		DDID (D)	Tube of 50 NE5534P		NE5534P	
		PDIP (P)	Tube of 50	NE5534AP	NE5534AP	
		SOIC (D)	Tube of 75	NE5534D	NESSO4	
0°C to 70°C	4 mV		Reel of 2500	NE5534DR	NE5534	
			Tube of 75	NE5534AD	55044	
			Reel of 2500	NE5534ADR	5534A	
		SOP (PS)	Reel of 2000	NE5534PSR	N5534	
–40°C to 85°C	4 mV	PDIP (P)	Tube of 50	SA5534P	SA5534P	
			Tube of 50	SA5534AP	SA5534AP	
		SOIC (D)	Tube of 75	SA5534D	045504	
			Reel of 2500	SA5534DR	SA5534	
			Tube of 75	SA5534AD	CAFE24A	
			Reel of 2500	SA5534ADR	SA5534A	
		COD (DC)	Tube of 80	SA553APS	CA5524	
		SOP (PS)	Reel of 2000	SA553APSR	SA5534	

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

schematic




All component values shown are nominal.

SLOS070C - JULY 1979 - REVISED SEPTEMBER 2004

symbol application circuit

Frequency Compensation and Offset-Voltage Nulling Circuit

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage: V _{CC+} (see Note 1)	
V _{CC} - (see Note 1)	
Input voltage either input (see Notes 1 and 2)	V _{CC+}
Input current (see Note 3)	
Duration of output short circuit (see Note 4)	Unlimited
Package thermal impedance, θ_{JA} (see Notes 5 and 6): D pa	ckage 97°C/W
P pa	ckage 85°C/W
PS p	ackage 95°C/W
Operating virtual junction temperature, T _J	150°C
Storage temperature range, T _{stq}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC-}.
 - 2. The magnitude of the input voltage must never exceed the magnitude of the supply voltage.
 - 3. Excessive current will flow if a differential input voltage in excess of approximately 0.6 V is applied between the inputs, unless some limiting resistance is used.
 - 4. The output may be shorted to ground or to either power supply. Temperature and/or supply voltages must be limited to ensure the maximum dissipation rating is not exceeded.
 - 5. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
 - 6. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions

			MIN	MAX	UNIT
V _{CC+}	Supply voltage		5	15	V
VCC-	Supply voltage		-5	-15	V
т.		NE5534, NE5534A	0	70	°C
T _A Operating free-air temperature range		SA5534, SA5534A	-40	85	C

SLOS070C - JULY 1979 - REVISED SEPTEMBER 2004

electrical characteristics, $V_{CC}^{\pm} = \pm 15 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDI	MIN	TYP	MAX	UNIT		
V	land effect with an	$V_{O} = 0$,	T _A = 25°C		0.5	4	>/	
VIO	Input offset voltage	$R_S = 50 \Omega$	T _A = Full range			5	mV	
			T _A = 25°C		20	300	nA	
10	Input offset current	V _O = 0	T _A = Full range			400		
1		\/- 0	T _A = 25°C		500	1500	~ Λ	
lΒ	Input bias current	V _O = 0	T _A = Full range			2000	nA	
V _{ICR}	Common-mode input voltage range			±12	±13		V	
		D > 000 O	$V_{CC\pm} = \pm 15 \text{ V}$	24	26		V	
VO(PP)	Maximum peak-to-peak output voltage swing	R _L ≥ 600 Ω	$V_{CC\pm} = \pm 18 \text{ V}$	30	32			
^	Large-signal differential voltage amplification	$V_0 = \pm 10 \text{ V},$	T _A = 25°C	25	100		V/mV	
A^{ND}		$R_L \ge 600 \Omega$	T _A = Full range	15				
	Small-signal differential voltage amplification	f = 10 kHz	CC = 0		6		\//\/	
A_{vd}			C _C = 22 pF		2.2		V/mV	
	Maximum-output-swing bandwidth	V _O = ±10 V	CC = 0		200		- kHz	
Post			$C_C = 22 pF$		95			
BOM		$V_{CC\pm} = \pm 18 \text{ V},$ $R_L \ge 600 \Omega,$	$V_{O} = \pm 14 \text{ V},$ $C_{C} = 22 \text{ pF}$		70		KHZ	
B ₁	Unity-gain bandwidth	$C_C = 22 \text{ pF},$	C _L = 100 pF		10		MHz	
rį	Input resistance			30	100		kΩ	
z ₀	Output impedance	AVD = 30 dB, CC = 22 pF,	$R_L \ge 600 \Omega$, $f = 10 \text{ kHz}$		0.3		Ω	
CMRR	Common-mode rejection ratio	$V_O = 0$, $R_S = 50 \Omega$	V _{IC} = V _{ICR} min,	70	100		dB	
k _{SVR}	Supply-voltage rejection ratio (ΔV _{CC} /ΔV _{IO)}	$V_{CC+} = \pm 9 \text{ V to } \pm 15 \text{ V},$ $V_{O} = 0$	$R_S = 50 \Omega$,	80	100		dB	
los	Output short-circuit current				38		mA	
ICC	Supply current	V _O = 0, No load	T _A = 25°C		4	8	mA	
		•						

[†] All characteristics are measured under open-loop conditions with zero common-mode input voltage, unless otherwise specified. For NE5534 and NE5534A, full range is 0°C to 70°C. For SA5534 and SA5534A, full range is -40°C to 85°C.

SLOS070C - JULY 1979 - REVISED SEPTEMBER 2004

operating characteristics, $V_{\mbox{CC}}\,\pm$ = ± 15 V, $T_{\mbox{A}}$ = $25^{\circ}\mbox{C}$

PARAMETER		TEST CONDITIONS	NE5534, SA5534	NE5534A, SA5	UNIT		
			TYP	MIN TYP	MAX		
0.0	Olemente	$C_C = 0$	13	13		1//	
SR	Slew rate	$C_C = 22 pF$	6	6		V/μs	
	Rise time	$V_{I} = 50 \text{ mV}, A_{VD} = 1,$ $R_{I} = 600 \Omega, C_{C} = 22 \text{ pF}$	20	20		ns	
 .	Overshoot factor	$R_L = 600 \Omega, C_C = 22 pF$ $C_L = 100 pF$	20	20		%	
t _r	Rise time	$V_{I} = 50 \text{ mV}, A_{VD} = 1,$ $R_{I} = 600 \Omega, C_{C} = 47 \text{ pF}$	50	50		ns	
	Overshoot factor	$R_L = 600 \Omega$, $C_C = 47 pF$ $C_L = 500 pF$	35	35		%	
\ <u></u>	Equivalent input poice voltage	f = 30 Hz	7	5.5	7	nV/√ Hz	
V _n	Equivalent input noise voltage	f = 1 kHz	4	3.5	4.5		
		f = 30 Hz	2.5	1.5			
^I n	Equivalent input noise current	f = 1 kHz	0.6	0.4		pA/√Hz	
F	Average noise figure	$R_S = 5 \text{ k}\Omega$, $f = 10 \text{ Hz to } 20 \text{ kHz}$		0.9		dB	

SLOS070C - JULY 1979 - REVISED SEPTEMBER 2004

TYPICAL CHARACTERISTICS[†]

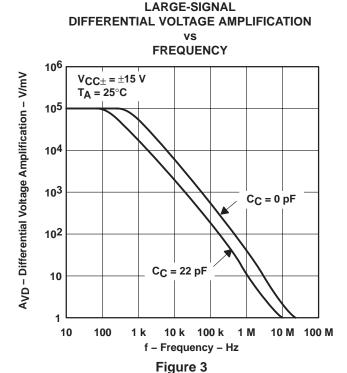
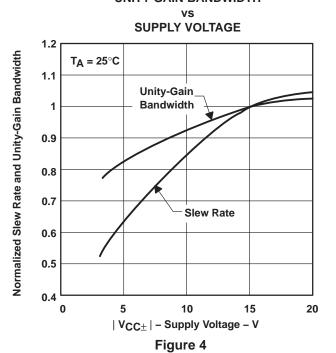

NORMALIZED INPUT BIAS CURRENT AND INPUT OFFSET CURRENT vs FREE-AIR TEMPERATURE Normalized Input Bias Current and Input Offset Current 1.6 $V_{CC\pm} = \pm 15 V$ 1.4 Offset 1.2 **Bias** 1 0.8 0.6 -75 -50 25 50 100 125 T_A - Free-Air Temperature - °C

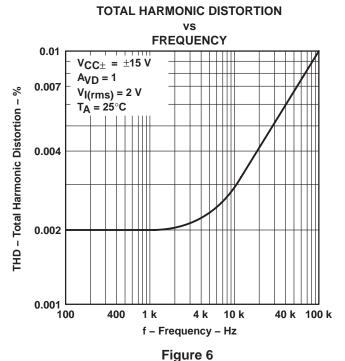
Figure 1

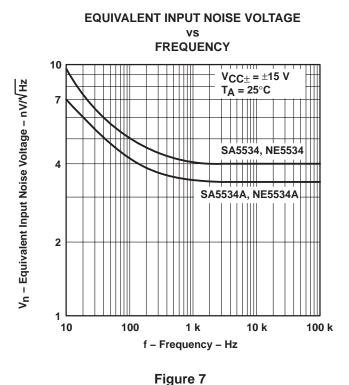

vs **FREQUENCY** VO(PP) - Maximum Peak-to-Peak Output Voltage - V 30 CC = 025 20 15 10 C_C = 22 pF $V_{CC}\pm = \pm 15 V$ $C_C = 47 pF$ T_A = 25°C 100 10 k 100 k f - Frequency - Hz

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE

Figure 2

NORMALIZED SLEW RATE AND UNITY-GAIN BANDWIDTH




[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS[†]

NORMALIZED SLEW RATE AND UNITY-GAIN BANDWIDTH vs FREE-AIR TEMPERATURE 1.2 Normalized Slew Rate and Unity-Gain Bandwidth $V_{CC\pm} = \pm 15 V$ 1.1 Slew Rate Unity-Gain Bandwidth 1 0.9 0.8 -75 -50 -25 0 25 50 75 100 125 T_A - Free-Air Temperature - °C Figure 5

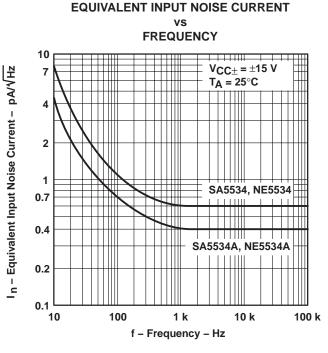


Figure 8

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS

TOTAL EQUIVALENT INPUT NOISE VOLTAGE vs

SOURCE RESISTANCE

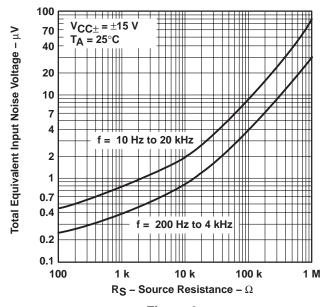


Figure 9

ti.com 4-Mar-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
NE5534AD	ACTIVE	SOIC	D	8	75	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR
NE5534ADR	ACTIVE	SOIC	D	8	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR
NE5534AJG	OBSOLETE	CDIP	JG	8		None	Call TI	Call TI
NE5534AP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
NE5534D	ACTIVE	SOIC	D	8	75	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR
NE5534DR	ACTIVE	SOIC	D	8	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR
NE5534IP	OBSOLETE	PDIP	Р	8		None	Call TI	Call TI
NE5534P	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
NE5534PSR	ACTIVE	SO	PS	8	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
SA5534AD	ACTIVE	SOIC	D	8	75	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM
SA5534ADR	ACTIVE	SOIC	D	8	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM
SA5534AP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SA5534D	ACTIVE	SOIC	D	8	75	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM
SA5534DR	ACTIVE	SOIC	D	8	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM
SA5534P	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SA5534PS	ACTIVE	SO	PS	8	80	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
SA5534PSR	ACTIVE	SO	PS	8	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

None: Not yet available Lead (Pb-Free).

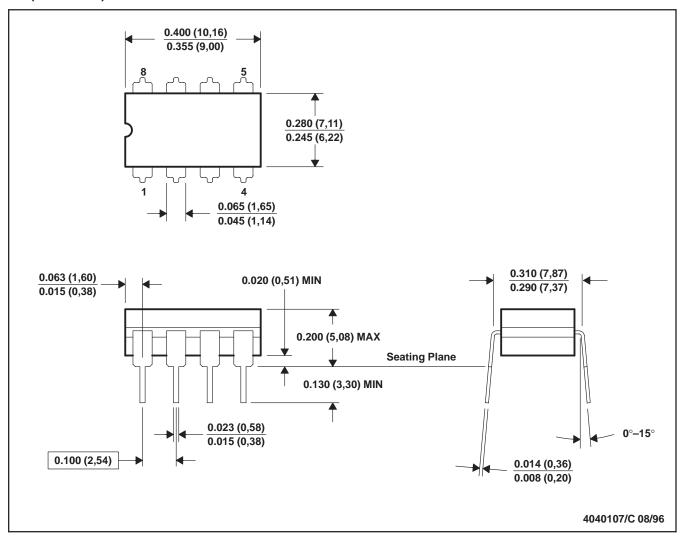
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight.

⁽²⁾ Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature.

PACKAGE OPTION ADDENDUM

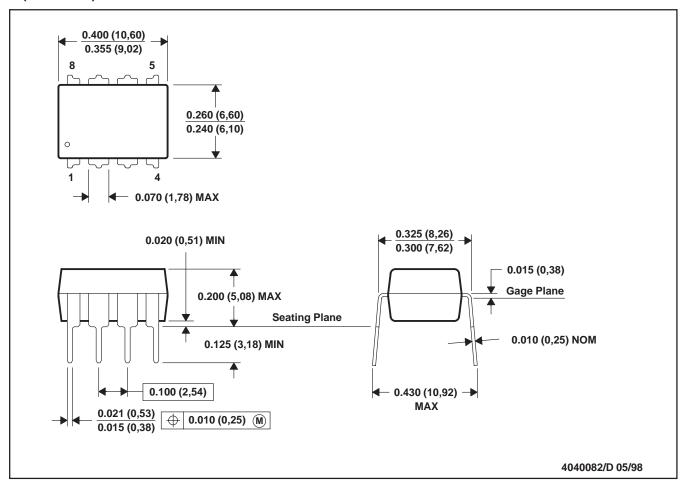

4-Mar-2005

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

JG (R-GDIP-T8)

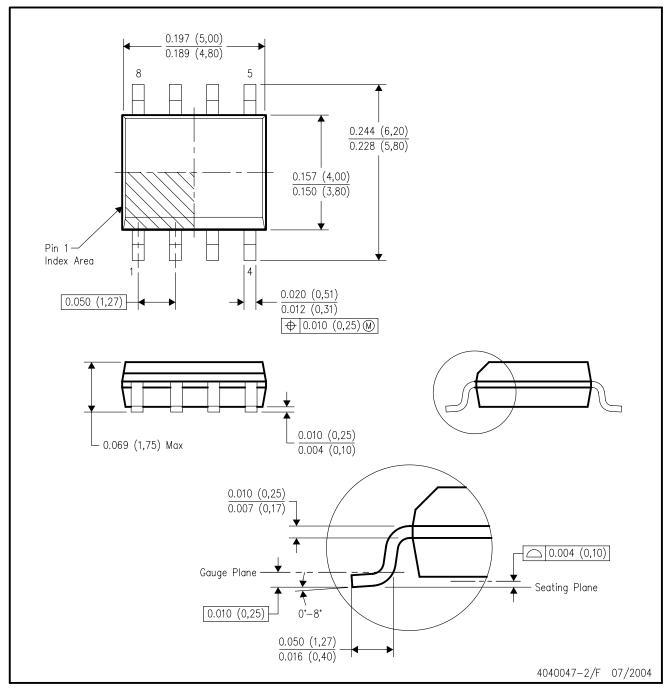
CERAMIC DUAL-IN-LINE


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE

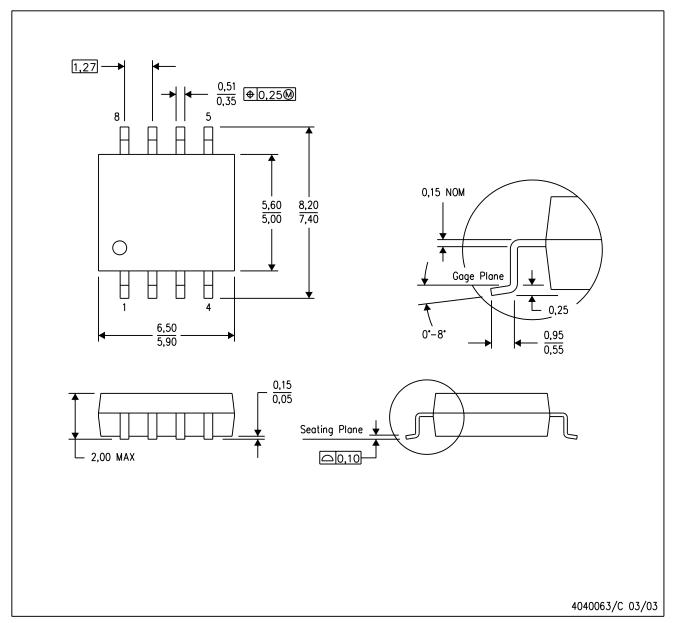

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001

D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AA.

MECHANICAL DATA

PS (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A.

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265