捷多邦,专业**SN54ABT16284**1加**SNF4**ABT162841 20-BIT BUS-INTERFACE D-TYPE LATCHES WITH 3-STATE OUTPUTS

SCBS665B - JUNE 1996 - REVISED MAY 1997

- Members of the Texas Instruments
 Widebus™ Family
- Output Ports Have Equivalent 25-Ω Series Resistors, So No External Resistors Are Required
- State-of-the-Art EPIC-IIB™ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical V_{OLP} (Output Ground Bounce)
 0.8 V at V_{CC} = 5 V, T_A = 25°C
- High-Impedance State During Power Up and Power Down
- Distributed V_{CC} and GND Pin Configuration
 Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings

description

These 20-bit transparent D-type latches feature noninverting 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

SN54ABT162841 . . . WD PACKAGE SN74ABT162841 . . . DGG OR DL PACKAGE (TOP VIEW)

		1 1		
10E [1	0	56]1LE
1Q1	2		55] 1D1
1Q2 [3	W.	54	1D2
GND [4		53	GND
1Q3 [5		52] 1D3
1Q4 [6		51] 1D4
v _{cc} [7		50]v _{cc}
1Q5 [8] 1D5
1Q6 [9		48] 1D6
1Q7 [10		47] 1D7
GND [11		46	GND
1Q8 [12		45	1D8
1Q9	13		44	1D9
1Q10	14	W.	43] 1D10
2Q1 [15		42	2D1
2Q2 [16		41	2D2
2Q3 [17		40	2D3
GND [18	;	39	GND
2Q4 [19	;	38] 2D4
2Q5 [20	;	37	2D5
2Q6 [21	;	36	2D6
v _{cc} [22	;	35	Vcc
2Q7 [23		34	2D7
2Q8 [24	:	33	2D8
GND [25	ul Y	32	GND
2Q9 [26		31] 2D9
2Q10 [27	;	30	2D10
20E	28		29]2LE

The 'ABT162841 can be used as two 10-bit latches or one 20-bit latch. While the latch-enable (1LE or 2LE) input is high, the Q outputs of the corresponding 10-bit latch follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the levels set up at the D inputs.

A buffered output-enable (1 $\overline{\text{OE}}$ or 2 $\overline{\text{OE}}$) input can be used to place the outputs of the corresponding 10-bit latch in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly.

The outputs, which are designed to sink up to 12 mA, include equivalent 25- Ω series resistors to reduce overshoot and undershoot.

OE does not affect the internal operation of the latches. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

SN54ABT162841, SN74ABT162841 20-BIT BUS-INTERFACE D-TYPE LATCHES WITH 3-STATE OUTPUTS

SCBS665B - JUNE 1996 - REVISED MAY 1997

description (continued)

When V_{CC} is between 0 and 2.1 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 2.1 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54ABT162841 is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74ABT162841 is characterized for operation from -40° C to 85° C.

FUNCTION TABLE (each 10-bit latch)

	INPUTS	OUTPUT			
OE	LE	D	Q		
L	Н	Н	Н		
L	Н	L	L		
L	L	Χ	Q ₀		
Н	Χ	Χ	Z		

logic symbol†

 $^{\ ^\}dagger$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

SN54ABT162841, SN74ABT162841 20-BIT BUS-INTERFACE D-TYPE LATCHES WITH 3-STATE OUTPUTS

SCBS665B - JUNE 1996 - REVISED MAY 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	
Voltage range applied to any output in the high or power-off state, V _O	
Current into any output in the low state, I _O	
Input clamp current, I_{IK} ($V_I < 0$)	
Output clamp current, I _{OK} (V _O < 0)	
Package thermal impedance, θ_{JA} (see Note 2): DGG package	86°C/W
DL package	74°C/W
Storage temperature range, T _{stq}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions (see Note 3)

					SN74ABT162841		UNIT
			MIN	MAX	MIN	MAX	UNII
Vcc	Supply voltage		4.5	5.5	4.5	5.5	V
VIH	High-level input voltage		2	Ż	2		V
V _{IL}	Low-level input voltage			8.0		0.8	V
VI	Input voltage		0 <	Vcc	0	VCC	V
loн	High-level output current		7	-12		-12	mA
loL	Low-level output current		3	12		12	mA
Δt/Δν	Input transition rise or fall rate	Outputs enabled	20/	10		10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate	·	200		200	·	μs/V
TA	Operating free-air temperature		-55	125	-40	85	°C

NOTE 3: Unused inputs must be held high or low to prevent them from floating.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

^{2.} The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51.

SN54ABT162841, SN74ABT162841 20-BIT BUS-INTERFACE D-TYPE LATCHES WITH 3-STATE OUTPUTS

SCBS665B - JUNE 1996 - REVISED MAY 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		Т	A = 25°C	;	SN54ABT	162841	SN74ABT	162841	UNIT	
				MIN	TYP [†]	MAX	MIN	MAX	MIN	MAX	UNIT	
VIK		$V_{CC} = 4.5 \text{ V},$	I _I = -18 mA			-1.2		-1.2		-1.2	V	
		$V_{CC} = 4.5 \text{ V},$	I _{OH} = -1 mA	2.5			2.5		2.5			
\ \/ - · ·		V _{CC} = 5 V, I _{OH} = -1 mA		3			3		3		V	
VOH		V 45 V	$I_{OH} = -3 \text{ mA}$	2.4			2.4		2.4		V	
		V _{CC} = 4.5 V	I _{OH} = -12 mA	2*					2			
V		V 45V	I _{OL} = 8 mA		0.4	0.8		0.8		0.65	V	
VOL		$V_{CC} = 4.5 \text{ V}$	I _{OL} = 12 mA			0.55*				0.8	V	
V _{hys}			_		100						mV	
l _l		$V_{CC} = 0$ to 5.5 $V_I = V_{CC}$ or G				±1		±1		±1	μΑ	
lozpu	j‡	$V_{CC} = 0 \text{ to } 2.1$ $V_{O} = 0.5 \text{ V to } 2$	V, 2.7 V, OE = X			±50		±50		±50	μΑ	
lozpe) [‡]	$V_{CC} = 2.1 \text{ V to } 2.0 \text{ V} = 0.5 \text{ V to } 2.0 \text{ V} = 0.5 \text{ V} = 0.0 \text{ V} = 0.0$	0, 2.7 V, OE = X			±50	6	±50		±50	μΑ	
lozh		$V_{CC} = 2.1 \text{ V} \text{ to}$ $V_{O} = 2.7 \text{ V}, \text{ OE}$				10	2008	10		10	μΑ	
lozL		$V_{CC} = 2.1 \text{ V} \text{ to}$ $V_{O} = 0.5 \text{ V}, \text{ OE}$	5.5 V, ≥ 2 V			-10	Q	-10		-10	μΑ	
l _{off}		$V_{CC} = 0$,	V_I or $V_O \le 4.5 \text{ V}$			±100				±100	μΑ	
ICEX	Outputs high	$V_{CC} = 5.5 \text{ V},$	V _O = 5.5 V			50		50		50	μΑ	
IO§		$V_{CC} = 5.5 \text{ V},$	V _O = 2.5 V	-25	-75	-100	-25	-100	-25	-100	mA	
	Outputs high					0.5		0.5		0.5		
Icc	Outputs low	$V_{CC} = 5.5 \text{ V}, \text{ I}_{C}$ $V_{I} = V_{CC} \text{ or } G$				89		89		89	mA	
	Outputs disabled		Al = ACC OF GIAD			0.5		0.5		0.5		
ΔICC¶		V _{CC} = 5.5 V, C Other inputs at	one input at 3.4 V, V _{CC} or GND			1.5		1.5		1.5	mA	
Ci		V _I = 2.5 V or 0.	5 V		3.5						pF	
Co		$V_0 = 2.5 \text{ V or } 0$).5 V		9						pF	

^{*} On products compliant to MIL-PRF-38535, this parameter does not apply.

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

		V _{CC} = 5 V, T _A = 25°C		SN54ABT162841		SN74ABT162841		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
t _W	Pulse duration, LE high or low	4		4	M	4		ns
t _{su}	Setup time, data before LE↓	0.8		0.8		0.8		ns
t _h	Hold time, data after LE↓	1.8		1.8		1.8		ns

[†] All typical values are at $V_{CC} = 5 \text{ V}$.

[‡] This parameter is characterized, but not production tested.

[§] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

 $[\]P$ This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SN54ABT162841, SN74ABT162841 **20-BIT BUS-INTERFACE D-TYPE LATCHES** WITH 3-STATE OUTPUTS SCBS665B – JUNE 1996 – REVISED MAY 1997

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM TO		V _{CC} = 5 V, T _A = 25°C		SN54ABT162841		SN74ABT162841		UNIT		
	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX		
^t PLH	D	Q	2.1	3.5	4.5	2.1	5.7	2.1	5.2		
^t PHL		Q	3	4.3	5.3	3	6.2	3	6	ns	
^t PLH	LE	Q	2.1	3.5	4.5	2.1	5.6	2.1	5.4	ns	
^t PHL			2.8	4.1	5.1	2.8	6.1	2.8	5.8	115	
^t PZH	ŌĒ	Q	2	3.6	4.7	2	5.8	2	5.7	ns	
^t PZL	OE OE	ά	3	4.6	5.7	Q 3	6.7	3	6.5	115	
^t PHZ	ŌĒ	<u> </u>	Q	2.6	4.3	5.7	2.6	6.6	2.6	6.5	ns
t _{PLZ}		y	2.2	3.6	5.8	2.2	8.4	2.2	7.1	115	

SCBS665B - JUNE 1996 - REVISED MAY 1997

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \,\Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated