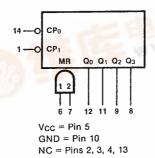
54/74<mark>92A</mark> 54LS/74LS92

DIVIDE-BY-TWELVE COUNTER


CONNECTION DIAGRAM PINOUT A 14 CPo CP₁ 1 13 NC NC 2 12 Q₀ NC 3 11 Q: NC 4 10 GND Vcc 5 9 Q₂ MR₁ 6 8 Q₃ MR₂ 7

DESCRIPTION — The '92 is a 4-stage ripple counter containing a high speed flip-flop acting as a divide-by-two and three flip-flops connected as a divide-by-six. HIGH signals on the Master Reset (MR) inputs override the clocks and force all outputs to the LOW state.

ORDERING CODE: See Section 9

On Definite Court of the Court						
	PIN	COMMERCIAL GRADE	MILITARY GRADE	PKG		
PKGS	OUT	$V_{CC} = +5.0 \text{ V } \pm 5\%,$ $T_{A} = 0^{\circ}\text{C to } +70^{\circ}\text{C}$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ} \text{ C} \text{ to } +125^{\circ} \text{ C}$	TYPE		
Plastic DIP (P)	Α	7492APC, 74LS92PC	NW.0250.00	9A		
Ceramic DIP (D)	А	7492ADC, 74LS92DC	5492ADM, 54LS92DM	6A		
Flatpak (F)	А	7492AFC, 74LS92FC	5492AFM, 54LS92FM	31		

LOGIC SYMBOL

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	54/74 (U.L.) HIGH/LOW	54/74LS (U.L.) HIGH/LOW	
CP ₀	÷2 Section Clock Input (Active Falling Edge)	2.0/2.0	0.125/1.5	
CP ₁	÷6 Section Clock Input (Active Falling Edge)	3.0/3.0	0.250/2.0	
MR ₁ , MR ₂	Asynchronous Master Reset Input (Active HIGH)	1.0/1.0	0.5/0.25	
Q ₀	÷2 Section Output*	20/10	10/5.0 (2.5)	
Q1 Q3	÷6 Section Outputs	20/10	10/5.0 (2.5)	

WWW.DZSG.COM

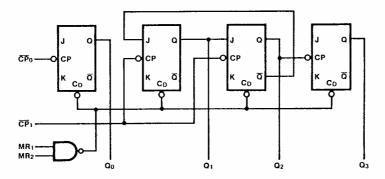
The Q0 output is guaranteed to drive the full rated fan-out plus the $\overline{\sf CP}_1$ input.

FUNCTIONAL DESCRIPTION — The '92 is a 4-bit ripple type divide-by-twelve counter. Each device consists of four master/slave flip-flops which are internally connected to provide a divide-by-two section and a divideby-six section. Each section has a separate clock input which initiates state changes of the counter on the HIGH-to-LOW clock transition. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used for clocks or strobes. The Q_0 output of each device is designed and specified to drive the rated fan-out plus the \overline{CP}_1 input of the device. A gated AND asynchronous Master Reset (MR1, MR2) is provided which overrides the clocks and resets (clears) all the flip-flops. Since the output from the divide-by-two section is not internally connected to the succeeding stages, the devices may be operated in various counting modes:

- A. Modulo 12, Divide-By-Twelve Counter The CP₁ input must be externally connected to the Q₀ output. The CP₀ input receives the incoming count and Q₃ produces a symmetrical divide-by-twelve square wave output.
- B. Divide-By-Two and Divide-By-Six Counter No external interconnections are required. The first flip-flop is used as a binary element for the divide-by-two function. The \overline{CP}_1 input is used to obtain divide-by-three operation at the Q_1 and Q_2 outputs and divide-by-six operation at the Q_3 output.

MODE SELECTION TABLE

RE INPL	SET JTS		רטס	PUT	S		
MR ₁	MR ₂	Q ₀	Qi	Q ₂	Q ₃		
Н	Н	L	L	L	L		
L	Н	Count					
Н	L	Count					
L	L	Count					


H = HIGH Voltage Level L = LOW Voltage Level

TRUTH TABLE

COUNT	ОИТРИТ					
000111	Q ₀	Q ₁	Q ₂	Q ₃		
0	L.	L	L	L		
1	Н	L	L	L		
2	Ĺ	Н	L	L		
3	Н	Н	L	L		
4	L	L	Н	L		
5	Н	L	Н	L		
6	L	L	L	Н		
7	Н	L	L	Н		
8	Ŀ.	Н	L	Н		
9	Н	Н	L	Н		
10	L	L	Н	Η		
11	Н	L	Н	Н		

NOTE: Output Q0 connected to $\overline{\text{CP}}_1$

LOGIC DIAGRAM

SYMBOL	ACTERISTICS OVER OPERATIF	54/74		54/74LS		UNITS	CONDITIONS
	PARAMETER	Min	Max	Min	Max		
liH	Input HIGH Current, CPo		1.0		0.2	mA	$V_{CC} = Max$, $V_{IN} = 5.5 V$
Іін	Input HIGH Current, CP1		1.0		0.4	mA	V _{CC} = Max, V _{IN} = 5.5 V
lcc	Power Supply Current		39		15	mA	V _{CC} = Max

AC CHARACTERISTICS: V_{CC} = 5.0 V, T_A = 25°C (See Section 3 for waveforms and load configurations)

		54/74	54/74LS	UNITS	CONDITIONS
SYMBOL	PARAMETER	C _L = 15 pF R _L = 400 Ω	C _L = 15 pF		
		Min Max	Min Max		
f _{max}	Maximum Count Frequency, CP ₀ Input	32	32	MHz	Figs. 3-1, 3-9
f _{max}	Maximum Count Frequency, CP ₁ Input	16	16	MHz	Figs. 3-1, 3-9
tPLH tPHL	Propagation Delay CP ₀ to Q ₀	16 18	16 18	ns	Figs. 3-1, 3-9
tPLH tPHL	Propagation Delay CP ₀ to Q ₃	48 50	48 50	ns	Figs. 3-1, 3-9
tPLH tPHL	Propagation Delay CP ₁ to Q ₁	16 21	16 21	ns	Figs. 3-1, 3-9
tPLH tPHL	Propagation Delay CP ₁ to Q ₂	16 21	16 21	ns	Figs. 3-1, 3-9
tplH tpHL	Propagation Delay CP ₁ to Q ₃	32 35	32 35	ns	Figs. 3-1, 3-9
tPHL	Propagation Delay, MR to Qn	40	40	ns	Figs. 3-1, 3-17

AC OPERATING REQUIREMENTS: $V_{CC} = 5.0 \text{ V}$, $T_A = 25^{\circ}\text{C}$

SYMBOL	PARAMETER	54/74	54/74LS	UNITS	CONDITIONS	
	PARAMETER	Min Max	Min Max			
w (H)	CP ₀ Pulse Width HIGH	15	15	ns	Fig. 3-9	
t _w (H)	CP ₁ Pulse Width HIGH	30	30	ns		
t _w (H)	MR Pulse Width HIGH	15	15	ns	Fig. 3-17	
t _{rec}	Recovery Time, MR to CP	25	25	ns		