

ELECTRONICS INC.
44 FARRAND STREET
BLOOMFIELD, NJ 07003
(973) 748–5089

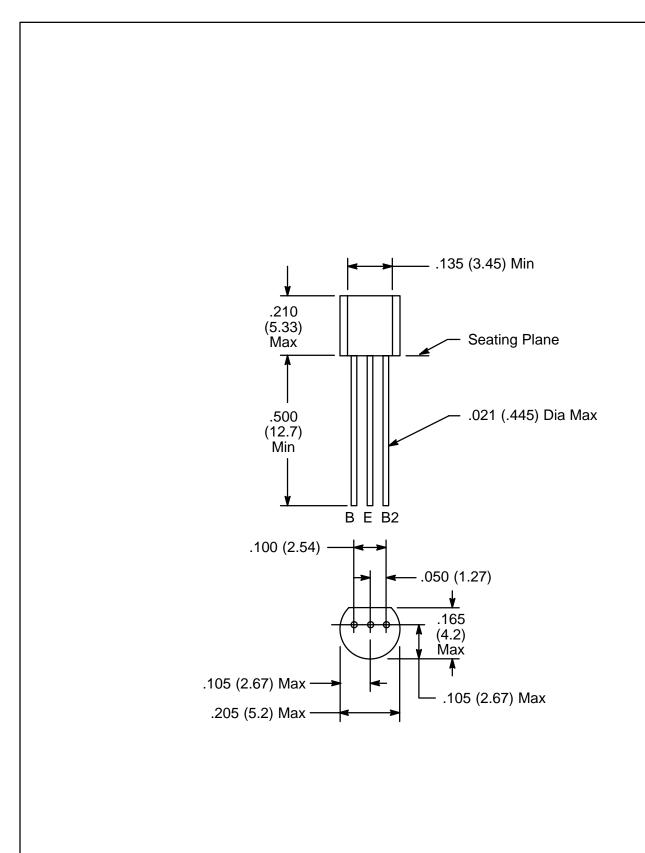
NTE6410 Unijunction Transistor (UJT)

Description:

The NTE6410 is a PN unijunction transistor in a TO92 type package designed for use in pulse and timing circuits, sensing circuits and thyristor trigger circuits.

<u>Absolute Maximum Ratings</u>: $(T_A = +25^{\circ}C \text{ unless other specified})$

Note 1. Duty cycle \leq 1%, PRR = 10 PPS


Note 2. Based upon power dissipation at $T_A = +25^{\circ}C$

<u>Electrical Characteristics</u>: (T_A = +25°C unless other specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Intrinsic Standoff Ratio	η	V _{B2B1} = 10V, Note 3	0.70	_	0.85	
Interbase Resistance	R _{BB}		4.0	6.0	9.1	kΩ
Interbase Resistance Temperature Coefficient	αR_{BB}		0.1	-	0.9	%/°C
Emitter Saturation Voltage	V _{BE1(sat)}	$V_{B2B1} = 10V$, $I_E = 50mA$, Note 4		2.5	14	V
Modulated Interbase Current	I _{B2(Mod)}	V _{B2B1} = 10V, I _E = 50mA	7-1	15	OF.	mA
Emitter Reverse Current	I _{EB2O}	$V_{B2E} = 30V, I_{B1} = 0$	Al-	0.005	1.0	μΑ
Peak-Point Emitter Current	IР	V _{B2B1} = 25V	_	1.0	5.0	μΑ
Valley-Point Current	I _V	$V_{B2B1} = 20V, R_{B2} = 100\Omega, Note 4$	4.0	7.0	_	mA
Base-One Peak Pulse Voltage	V _{OB1}		5.0	8.0	_	V

Note 3. Intrinsic standoff ratio, is defined in terms of peak—point voltage, V_P , by means of the equation: $V_P = \eta \ V_{B2B1} \ V_F$, where V_F is approximately 0.49 volts at +25°C @ $I_F = 10\mu A$ and decreases with temperature at approximately 2.5mV/°C. Components R_1 , C_1 , and the UJT form a relaxation oscillator, the remaining circuitry serves as a peak—voltage detector. The forward drop of Diode D_1 compensates for V_F . To use, the "call" button is pushed, and R_3 is adjusted to make the current meter, M_1 , read full scale. When the "call" button is released, the value of η is read directly from the meter, if full scale on the meter reads 1.0.

Use pulse techniques: PW ~ 300 μ s, duty cycle \leq 2.0% to avoid internal heating, which may result in erroneous readings.

