High-Speed CMOS Logic 8-Input Multiplexer/Register, Three-State SCLS459A - June 2001 - Revised May 2003 #### **Features** - Edge-Triggered Data Flip-Flops - Transparent Select Latches - · Buffered Inputs - 3-State Complementary Outputs - Bus Line Driving Capability - Typical Propagation Delay: V_{CC} = 5V, C_L = 15pF, T_A = 25°C - Clock to Output = 22ns - Fanout (Over Temperature Range) - Standard Outputs...... 10 LSTTL Loads - Bus Driver Outputs 15 LSTTL Loads - Wide Operating Temperature Range . . . -55°C to 125°C - Balanced Propagation Delay and Transition Times - Significant Power Reduction Compared to LSTTL Logic ICs - 4.5V to 5.5V Operation - Direct LSTTL Input Logic Compatibility, V_{IL}= 0.8V (Max), V_{IH} = 2V (Min) - CMOS Input Compatibility, I_I ≤ 1μA at V_{OL}, V_{OH} #### Description The CD74HCT356 consists of data selectors/multiplexers that select one of eight sources. The data select bits (S0, S1, and S2) are stored in transparent latches that are enabled by a low latch enable input ($\overline{\text{LE}}$). The data is stored in edge-triggered flip-flops that are triggered by a low-to-high clock transition. In both types the 3-state outputs are controlled by three output-enable inputs ($\overline{OE1}$, $\overline{OE2}$, and OE3). #### Ordering Information | PART NUMBER | TEMP. RANGE
(°C) | PACKAGE | | | |---------------|---------------------|------------|--|--| | CD74HCT356E | -55 to 125 | 20 Ld PDIP | | | | CD74HCT356M96 | -55 to 125 | 20 Ld SOIC | | | NOTE: When ordering, use the entire part number. The suffix 96 denotes tape and reel. #### **Pinout** **CD74HCT356** (PDIP or SOIC) TOP VIEW D7 1 20 V_{CC} D6 2 D5 D4 4 OE3 16 OE2 D3 5 D2 6 15 OE1 D1 7 14 S0 13 S1 D0 8 CP 9 12 S2 11 LE GND 10 # Functional Diagram ## TRUTH TABLE | | INPUTS | | | | | | | | | |----|-------------|----|--------|-----|------------|---------|-----------------------------|-----------------|--| | SI | ELECT (NOTE | 1) | СГОСК | OU | TPUT ENABL | OUTPUTS | | | | | S2 | S1 | S0 | СР | OE1 | OE2 | OE3 | Ÿ | Y | | | Х | Х | Х | Х | Н | Х | Х | Z | Z | | | Х | Х | Х | Х | Х | Н | Х | Z | Z | | | Х | Х | Х | Х | Х | Х | L | Z | Z | | | L | L | L | 1 | L | L | Н | D0 | D0 | | | L | L | L | H or L | L | L | Н | Ō0 _n | D0 _n | | | L | L | Н | 1 | L | L | Н | D1 | D1 | | | L | L | Н | H or L | L | L | Н | D1 _n | D1 _n | | | L | Н | L | 1 | L | L | Н | D2 | D2 | | | L | Н | L | H or L | L | L | Н | D2 _n | D2 _n | | | L | Н | Н | 1 | L | L | Н | D3 | D3 | | | L | Н | Н | H or L | L | L | Н | D3 _n | D3 _n | | | Н | L | L | 1 | L | L | Н | D4 | D4 | | | Н | L | L | H or L | L | L | Н | D4 _n | D4 _n | | | Н | L | Н | 1 | L | L | Н | D5 | D5 | | | Н | L | Н | H or L | L | L | Н | D5 _n | D5 _n | | | Н | Н | L | 1 | L | L | Н | D6 | D6 | | | Н | Н | L | H or L | L | L | Н | D 6 _n | D6 _n | | #### TRUTH TABLE (Continued) | SELECT (NOTE 1) | | | CLOCK | ou | оиті | PUTS | | | |-----------------|----|----|--------|-------------|------|-----------------|-----------------|---| | S2 | S1 | S0 | СР | OE1 OE2 OE3 | | | Ÿ | Υ | | Н | Н | Н | 1 | L | L | D7 | D7 | | | Н | Н | Н | H or L | L | L | Ū7 _n | D7 _n | | $H = High\ \mbox{Voltage Level (Steady State)}; \ L = Low\ \mbox{Voltage Level (Steady State)}; \ \Upsilon = Transition\ from\ Low\ to\ High\ Level; \\ X = Don't\ Care; \ Z = High-Impedance\ State\ (Off\ State); \ D0_n...D7_n = the\ level\ of\ steady-state\ inputs\ D0\ through\ D7,\ respectively, before\ the\ most\ recent\ low-to-high\ transition\ of\ data\ control. \\ NOTE:$ 1. This column shows the input address setup with $\overline{\text{LE}}$ low. ## **Block Diagram** ## **Absolute Maximum Ratings** | DC Supply Voltage, V _{CC} 0.5V to 7V | |---| | DC Input Diode Current, I _{IK} | | For $V_1 < -0.5V$ or $V_1 > V_{CC} + 0.5V$ | | DC Output Diode Current, I _{OK} | | For $V_O < -0.5V$ or $V_O > V_{CC} + 0.5V$ | | DC Drain Current, per Output, I _O | | For -0.5V < V _O < V _{CC} + 0.5V | | DC Output Source or Sink Current per Output Pin, IO | | For $V_O > -0.5V$ or $V_O < V_{CC} + 0.5V$ | | DC V _{CC} or Ground Current, I _{CC} | #### Thermal Information | Thermal Resistance (Typical, Note 2) | θ_{JA} (°C/W) | |--|----------------------| | E (PDIP) Package | . 69 | | M (SOIC) Package | . 58 | | Maximum Junction Temperature | 150°C | | Maximum Storage Temperature Range | -65°C to 150°C | | Maximum Lead Temperature (Soldering 10s) | 300°C | | (SOIC - Lead Tips Only) | | ## **Operating Conditions** | Temperature Range, T _A | 55°C to 125°C | |---|-----------------------| | Supply Voltage Range, VCC | | | DC Input or Output Voltage, V _I , V _O | 0V to V _{CC} | | Input Rise and Fall Time | | | 2V | 1000ns (Max) | | 4.5V | 500ns (Max) | | 6V | 400ns (Max) | CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. #### NOTE: 2. The package thermal impedance is calculated in accordance with JESD 51-7. ## **DC Electrical Specifications** | | | | ST
ITIONS | | | 25°C | | -40°C T | O 85°C | -55°C T | O 125°C | | |--|------------------------------|---------------------------------------|---|---------------------|------|------|------|---------|--------|---------|---------|-------| | PARAMETER | SYMBOL | V _I (V) | I _O (mA) | V _{CC} (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | High Level Input
Voltage | V _{IH} | - | - | 4.5 to
5.5 | 2 | - | - | 2 | - | 2 | - | V | | Low Level Input
Voltage | V _{IL} | - | - | 4.5 to
5.5 | - | - | 0.8 | - | 0.8 | - | 0.8 | V | | High Level Output
Voltage
CMOS Loads | V _{ОН} | V _{IH} or
V _{IL} | -0.02 | 4.5 | 4.4 | - | - | 4.4 | - | 4.4 | - | V | | High Level Output
Voltage
TTL Loads | | | -4 | 4.5 | 3.98 | - | - | 3.84 | - | 3.7 | - | V | | Low Level Output
Voltage
CMOS Loads | V _{OL} | V _{IH} or
V _{IL} | 0.02 | 4.5 | - | - | 0.1 | - | 0.1 | - | 0.1 | V | | Low Level Output
Voltage
TTL Loads | | | 4 | 4.5 | - | - | 0.26 | - | 0.33 | - | 0.4 | V | | Input Leakage
Current | l _l | V _{CC} to
GND | 0 | 5.5 | - | - | ±0.1 | - | ±1 | - | ±1 | μА | | Quiescent Device
Current | Icc | V _{CC} or
GND | 0 | 5.5 | - | - | 8 | - | 80 | - | 160 | μА | | Additional Quiescent
Device Current Per
Input Pin: 1 Unit Load | ΔI _{CC}
(Note 3) | V _{CC}
-2.1 | - | 4.5 to
5.5 | - | 100 | 360 | - | 450 | - | 490 | μΑ | | 3-State Leakage
Current | l _{OZ} | V _{IL} or
V _{IH} | V _O =
V _{CC} or
GND | 5.5 | - | - | ±0.5 | - | ±5 | - | ±10 | μΑ | #### NOTE: 3. For dual-supply systems theoretical worst case ($V_I = 2.4V$, $V_{CC} = 5.5V$) specification is 1.8mA. ## Input Loading Table | INPUT | UNIT LOADS | |------------|------------| | D0-D7 | 0.50 | | S0, S1, S3 | 0.70 | | OE1, OE2 | 0.80 | | OE3 | 0.25 | | LE | 0.25 | | СР | 0.60 | NOTE: Unit Load is ΔI_{CC} limit specified in DC Electrical Specifications table, e.g., $360\mu A$ max at $25^{o}C$. ## **Prerequisite For Switching Specifications** | | | TEST | v _{cc} | | 25°C | | -40°C T | O 85°C | -55°C T | O 125°C | | |---|-------------------------------------|------------|-----------------|-----|------|-----|---------|--------|---------|---------|-------| | PARAMETER | SYMBOL | CONDITIONS | (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | CP Pulse Width | t _{PLH} , t _{PHL} | - | 4.5 | 16 | 20 | - | 25 | - | 30 | - | ns | | LE Pulse Width | t _{PLH} , t _{PHL} | - | 4.5 | 16 | 20 | - | 25 | - | 30 | - | ns | | Setup Times $Dn \to \overline{E}$ | t _{SU} | - | 4.5 | 5 | 7 | - | 9 | - | 11 | - | ns | | Setup Times Sn $\rightarrow \overline{\text{LE}}$ | t _{SU} | - | 4.5 | 5 | 7 | - | 9 | - | 11 | - | ns | | Hold Times $Dn \to \overline{E}$ | tH | - | 4.5 | 9 | 9 | - | 11 | - | 14 | - | ns | | Hold Times Sn $\rightarrow \overline{\text{LE}}$ | t _H | - | 4.5 | 12 | 12 | - | 15 | - | 18 | - | ns | ## **Switching Specifications** Input t_r , $t_f = 6ns$ | | | TEST | | 25°C | | -40°C TO 85°C | -55°C TO
125°C | | |---|-------------------------------------|-----------------------|---------------------|------|-----|---------------|-------------------|-------| | PARAMETER | SYMBOL | CONDITIONS | V _{CC} (V) | TYP | MAX | MAX | MAX | UNITS | | Propagation Delay, | t _{PLH} , t _{PHL} | C _L = 50pF | 4.5 | - | 51 | 64 | 77 | ns | | $CP \rightarrow Y, \overline{Y}$ | | C _L = 15pF | 5 | 22 | - | - | - | ns | | Propagation Delay, | t _{PLH} , t _{PHL} | C _L = 50pF | 4.5 | - | 59 | 74 | 89 | ns | | $Sn \rightarrow Y, \overline{Y}$ | | C _L = 15pF | 5 | 25 | - | - | - | ns | | Propagation Delay, | t _{PLH} , t _{PHL} | C _L = 50pF | 4.5 | - | 63 | 79 | 94 | ns | | $\overline{LE} \to Y, \overline{Y}$ | | C _L = 15pF | 5 | 25 | - | - | - | ns | | Output Disabling Time | t _{PLZ} , t _{PHZ} | C _L = 50pF | 4.5 | - | 33 | 41 | 50 | ns | | | t _{PLZ} | C _L = 15pF | 5 | 13 | - | - | - | ns | | | t _{PHZ} | C _L = 15pF | 5 | 15 | - | - | - | ns | | Output Enabling Time | t _{PLZ} , t _{PHZ} | C _L = 50pF | 4.5 | - | 34 | 43 | 51 | ns | | | | C _L = 15pF | 5 | 14 | - | - | - | ns | | Output Transition Time | t _{TLH} , t _{THL} | C _L = 50pF | 4.5 | - | 12 | 15 | 18 | ns | | Input Capacitance | C _{IN} | - | - | - | 10 | 10 | 10 | pF | | 3-State Capacitance | СО | - | - | - | 20 | 20 | 20 | pF | | Power Dissipation
Capacitance (Notes 4, 5) | C _{PD} | - | 5 | 52 | - | - | - | pF | #### NOTES: - 4. $C_{\mbox{\scriptsize PD}}$ is used to determine the dynamic power consumption, per device. - 5. $P_D = V_{CC}^2 (C_{PD} + C_L)$ where f_i = Input Frequency, C_L = Output Load Capacitance, V_{CC} = Supply Voltage. ## Test Circuits and Waveforms NOTE: Outputs should be switching from 10% V_{CC} to 90% V_{CC} in accordance with device truth table. For f_{MAX} , input duty cycle = 50%. FIGURE 2. CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH FIGURE 3. TRANSITION TIMES AND PROPAGATION-DELAY TIMES, COMBINATION LOGIC ## Test Circuits and Waveforms (Continued) FIGURE 5. 3-STATE PROPAGATION-DELAY WAVEFORM FIGURE 4. SETUP TIMES, HOLD TIMES, REMOVAL TIME, AND PROPAGATION-DELAY TIMES FOR EDGE TRIGGERED SEQUENTIAL LOGIC CIRCUITS NOTE: Open-drain waveforms t_{PLZ} and t_{PZL} are the same as those for 3-state shown on the left. The test circuit is Output $R_L = 1k\Omega$ to V_{CC} , $C_L = 50pF$. FIGURE 6. 3-STATE PROPAGATION-DELAY TEST CIRCUIT #### PACKAGE OPTION ADDENDUM 25-Feb-2005 #### **PACKAGING INFORMATION** | Orderable Device | Status ⁽¹⁾ | Package
Type | Package
Drawing | Pins | Package
Qty | Eco Plan ⁽²⁾ | Lead/Ball Finish | MSL Peak Temp ⁽³⁾ | |------------------|-----------------------|-----------------|--------------------|------|----------------|-------------------------|------------------|--| | CD74HCT356E | ACTIVE | PDIP | N | 20 | 20 | Pb-Free
(RoHS) | CU NIPDAU | Level-NC-NC-NC | | CD74HCT356M96 | ACTIVE | SOIC | DW | 20 | 2000 | Pb-Free
(RoHS) | CU NIPDAU | Level-2-250C-1 YEAR/
Level-1-235C-UNLIM | ⁽¹⁾ The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. None: Not yet available Lead (Pb-Free). Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight. (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. ## N (R-PDIP-T**) ## PLASTIC DUAL-IN-LINE PACKAGE 16 PINS SHOWN NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A). - The 20 pin end lead shoulder width is a vendor option, either half or full width. # DW (R-PDSO-G20) ## PLASTIC SMALL-OUTLINE PACKAGE NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). - D. Falls within JEDEC MS-013 variation AC. #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | Products | | Applications | | |------------------|------------------------|--------------------|---------------------------| | Amplifiers | amplifier.ti.com | Audio | www.ti.com/audio | | Data Converters | dataconverter.ti.com | Automotive | www.ti.com/automotive | | DSP | dsp.ti.com | Broadband | www.ti.com/broadband | | Interface | interface.ti.com | Digital Control | www.ti.com/digitalcontrol | | Logic | logic.ti.com | Military | www.ti.com/military | | Power Mgmt | power.ti.com | Optical Networking | www.ti.com/opticalnetwork | | Microcontrollers | microcontroller.ti.com | Security | www.ti.com/security | | | | Telephony | www.ti.com/telephony | | | | Video & Imaging | www.ti.com/video | | | | Wireless | www.ti.com/wireless | Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265