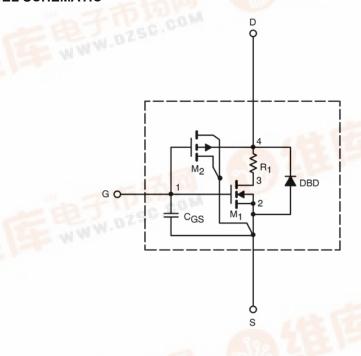


SPICE Device Model Si1404DH Vishay Siliconix

N-Channel 25-V (D-S) MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the –55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0 to 5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

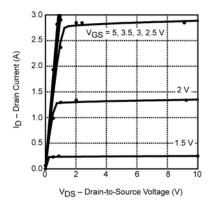
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

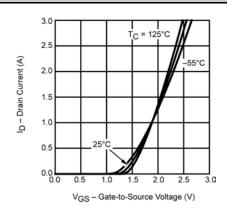
Document Number: 73120 www.vishay.com

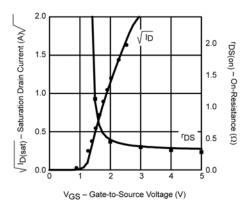
SPICE Device Model Si1404DH

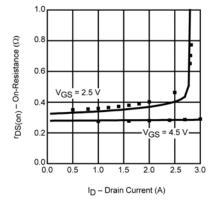
Vishay Siliconix

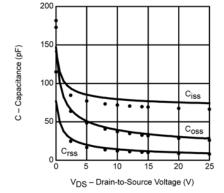
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	V_{DS} = V_{GS} , I_D = 250 μA	1		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} = 5 \text{ V}, V_{GS} = 4.5 \text{ V}$	11		Α
Drain-Source On-State Resistance ^a	r	V_{GS} = 4.5 V, I_{D} = 1.57 A	0.28	0.28	Ω
	r _{DS(on)}	V_{GS} = 2.5 V, I_{D} = 1.39 A	0.33	0.36	
Forward Transconductance ^a	g _{fs}	$V_{DS} = 15 \text{ V}, I_D = 0.75 \text{ A}$	2.3	1.5	S
Diode Forward Voltage ^a	V_{SD}	$I_S = 1.23 \text{ A}, V_{GS} = 0 \text{ V}$	0.76	0.85	٧
Dynamic ^b					
Total Gate Charge	Q_g	V _{DS} = 15 V, V _{GS} = 4.5 V, I _D = 1.57 A	1	1.3	nC
Gate-Source Charge	Q_{gs}		0.31	0.31	
Gate-Drain Charge	Q_{gd}		0.49	0.49	
Turn-On Delay Time	t _{d(on)}	V_{DD} = 15 V, R _L = 20 Ω I _D \cong 0.75 A, V _{GEN} = 4.5 V, R _G = 6 Ω	12	11	ns
Rise Time	t _r		15	18	
Turn-Off Delay Time	$t_{d(off)}$		19	17	
Fall Time	t _f		21	11	

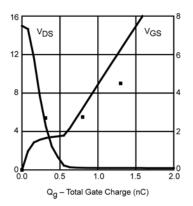

a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.


Document Number: 73120 www.vishay.com




SPICE Device Model Si1404DH Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.

Document Number: 73120 www.vishay.com