SPICE Device Model Si1404DH Vishay Siliconix # N-Channel 25-V (D-S) MOSFET #### **CHARACTERISTICS** - N-Channel Vertical DMOS - Macro Model (Subcircuit Model) - Level 3 MOS - Apply for both Linear and Switching Application - Accurate over the –55 to 125°C Temperature Range - Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics ## **DESCRIPTION** The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0 to 5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage. A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device. ### SUBCIRCUIT MODEL SCHEMATIC This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits. Document Number: 73120 www.vishay.com # **SPICE Device Model Si1404DH** # Vishay Siliconix | SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED) | | | | | | |---|---------------------|--|-------------------|------------------|------| | Parameter | Symbol | Test Conditions | Simulated
Data | Measured
Data | Unit | | Static | | | | | | | Gate Threshold Voltage | $V_{GS(th)}$ | V_{DS} = V_{GS} , I_D = 250 μA | 1 | | V | | On-State Drain Current ^a | I _{D(on)} | $V_{DS} = 5 \text{ V}, V_{GS} = 4.5 \text{ V}$ | 11 | | Α | | Drain-Source On-State Resistance ^a | r | V_{GS} = 4.5 V, I_{D} = 1.57 A | 0.28 | 0.28 | Ω | | | r _{DS(on)} | V_{GS} = 2.5 V, I_{D} = 1.39 A | 0.33 | 0.36 | | | Forward Transconductance ^a | g _{fs} | $V_{DS} = 15 \text{ V}, I_D = 0.75 \text{ A}$ | 2.3 | 1.5 | S | | Diode Forward Voltage ^a | V_{SD} | $I_S = 1.23 \text{ A}, V_{GS} = 0 \text{ V}$ | 0.76 | 0.85 | ٧ | | Dynamic ^b | | | | | | | Total Gate Charge | Q_g | V _{DS} = 15 V, V _{GS} = 4.5 V, I _D = 1.57 A | 1 | 1.3 | nC | | Gate-Source Charge | Q_{gs} | | 0.31 | 0.31 | | | Gate-Drain Charge | Q_{gd} | | 0.49 | 0.49 | | | Turn-On Delay Time | t _{d(on)} | V_{DD} = 15 V, R _L = 20 Ω I _D \cong 0.75 A, V _{GEN} = 4.5 V, R _G = 6 Ω | 12 | 11 | ns | | Rise Time | t _r | | 15 | 18 | | | Turn-Off Delay Time | $t_{d(off)}$ | | 19 | 17 | | | Fall Time | t _f | | 21 | 11 | | a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing. Document Number: 73120 www.vishay.com ## SPICE Device Model Si1404DH Vishay Siliconix ## COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED) Note: Dots and squares represent measured data. Document Number: 73120 www.vishay.com