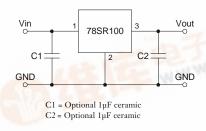
1.5 AMP POSITIVE STEP-DOWN **INTEGRATED SWITCHING REGULATOR**

Revised 6/30/98



- Very Small Footprint
- High Efficiency > 85%
- Self-Contained Inductor
- Internal Short-Circuit Protection
- Over-Temperature Protection
- Wide Input Range

The 78SR100 is a series of wide input voltage, 3-terminal Integrated Switching Regulators (ISRs). These ISRs have a maximum output current of 1.5A and an output voltage that is laser trimmed to a variety of industry standard voltages.

These 78 series regulators have excellent line and load regulation with internal shortcircuit and over-temperature protection, are very flexible, and may be used in a wide variety of applications.

Standard Application

Pin-Out Information

Pin	Function
1	V _{in}
2	GND
3	V _{out}

SUGGESTED BOARD LAYOUT Pkg Style 500

Ordering Info

Ordering inionilation								
78SR1	XX	Y	C					
Output Voltage	W.	Pack	age Suffix					

05 = 5.0 Volts

53 = 5.25 Volts **06** = 6.0 Volts

74 = 7.15 Volts

08 = 8.0 Volts

09 = 9.0 Volts

10 = 10.0 Volts

12 = 12.0 Volts

15 = 15.0 Volts

14 = 13.9 Volts

V = Vertical Mount

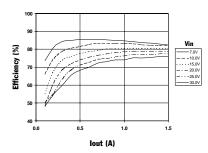
S = Surface Mount

H = Horizontal

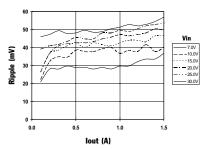
Mount

Specifications

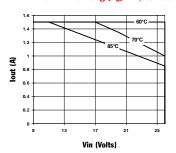
Characteristics (T _a = 25°C unless noted)	Symbols	Conditions	78SR100 SERIES			
			Min	Тур	Max	Units
Output Current	I _o	Over Vin range	0.1*	_	1.5	A
Short Circuit Current	I_{sc}	$V_{in} = V_{in} \min$	_	3.5	_	Apk
Input Voltage Range	$ m V_{in}$	$0.1 \le I_o \le 1.5A$ $V_o = 5V$ $V_o = 12V$	7 14.5		30 30	V V
Output Voltage Tolerance	$\Delta V_{ m o}$	Over V_{in} range, I_o =1.5A T_a = 0°C to +60°C	_	±1.0	±2.0	$%V_{o}$
Line Regulation	Reg _{line}	Over V _{in} range	_	±0.2	±0.4	%Vo
Load Regulation	Reg _{load}	$0.1 \le I_o \le 1.5A$	_	±0.1	±0.2	%Vo
V _o Ripple/Noise	V_n	$V_{in} = 9V, I_o = 1.5A$ $V_o = 5V$ $V_{in} = 16V, I_o = 1.5A$ $V_o = 12V$	-	50 80	OZS	${}^{\mathrm{m}\mathrm{V}_{\mathrm{pp}}}_{\mathrm{m}\mathrm{V}_{\mathrm{pp}}}$
Transient Response	t _{tr}	50% load change V _o over/undershoot		100 30	=	μSec %V _o
Efficiency	η	$V_{in} = 10V, I_{o} = 1A$ $V_{o} = 5V$ $V_{in} = 17V, I_{o} = 1A$ $V_{o} = 12V$	_	85 90	_	%
Switching Frequency	$f_{\rm o}$	Over V _{in} range, I _o =1.5A	600	650	700	kHz
Absolute Maximum Operating Temperature Range	Ta	250-COM	-40	_	+85	°C
Recommended Operating Temperature Range	T_a	Free Air Convection, (40-60LFM) At V _{in} = 24V, I _o =1.0A	-40	_	+80**	°C
Thermal Resistance	θ_{ja}	Free Air Convection, (40-60LFM)	_	45		°C/W
Storage Temperature	T_s	_	-40		+125	°C
Mechanical Shock	_	Per Mil-STD-883D, Method 2002.3	_	500	_	G's
Mechanical Vibration	_	Per Mil-STD-883D, Method 2007.2, 20-2000 Hz, soldered in a PC board	_	5	_	G's
Weight	_	_		6.5	_	grams

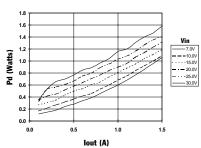

ISR will operate down to no load with reduced specifications.

^{**}See Thermal Derating chart.

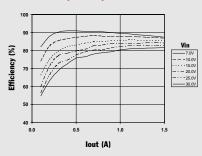

CHARACTERISTIC DATA

78SR133_ **3.3 VDC** (See Note 1)

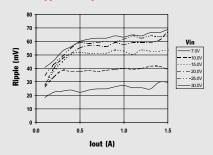

Efficiency vs Output Current


Ripple vs Output Current

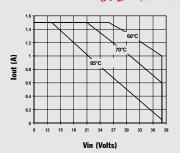
Thermal Derating (T_a) (See Note 2)

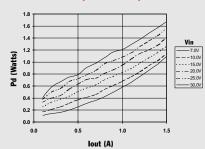


Power Dissipation vs Output Current

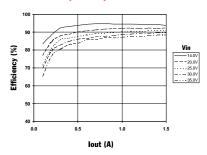


78SR105_ **5.0 VDC** (See Note 1)

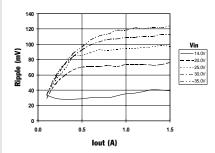

Efficiency vs Output Current


Ripple vs Output Current

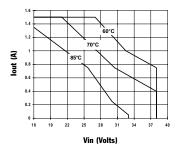
Thermal Derating (T_a) (See Note 2)

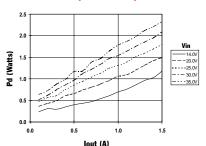


Power Dissipation vs Output Current



78SR112_ **12.0 VDC** (See Note 1)


Efficiency vs Output Current


Ripple vs Output Current

Thermal Derating (T_a) (See Note 2)

Power Dissipation vs Output Current

Note 1: All data listed in the above graphs, except for derating data, has been developed from actual products tested at 25°C. This data is considered typical data for the ISR. Note 2: Thermal derating graphs are developed in free air convection cooling of 40-60 LFM. (See Thermal Application Notes.)

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated