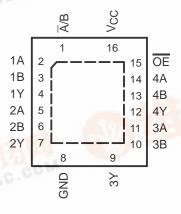
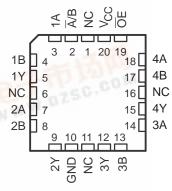

QUADRUPLE 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS


SCAS294N - JANUARY 1993 - REVISED OCTOBER 2003

- Operate From 1.65 V to 3.6 V
- Inputs Accept Voltages to 5.5 V
- Max tpd of 4.6 ns at 3.3 V
- Typical V_{OLP} (Output Ground Bounce) <0.8 V at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$
- Typical V_{OHV} (Output V_{OH} Undershoot) >2 V at V_{CC} = 3.3 V, T_A = 25°C
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- **ESD Protection Exceeds JESD 22**
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)


SN54LVC257A . . . J OR W PACKAGE SN74LVC257A . . . D, DB, NS, OR PW PACKAGE

SN74LVC257A . . . RGY PACKAGE (TOP VIEW)

SN54LVC257A . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

description/ordering information

These quadruple 2-line to 1-line data selectors/multiplexers are designed for 1.65-V to 3.6-V V_{CC} operation.

The 'LVC257A devices are designed to multiplex signals from 4-bit data sources to 4-output data lines in bus-organized systems. The 3-state outputs do not load the data lines when the output-enable (\overline{OE}) input is at a high logic level.

ORDERING INFORMATION

TA	PACKAGET		ORDERABLE PART NUMBER	TOP-SIDE MARKING
THE WY	QFN – RGY	Reel of 1000	SN74LVC257ARGYR	LC257A
C I		Tube of 40	SN74LVC257AD	
	SOIC - D	Reel of 2500	SN74LVC257ADR	LVC257A
		Reel of 250	SN74LVC257ADT	-Z703
-40°C to 85°C	SOP - NS	Reel of 2000	SN74LVC257ANSR	LVC257A
	SSOP – DB	Reel of 2000	SN74LVC257ADBR	LC257A
		Tube of 90	SN74LVC257APW	7. (C. C. C
	TSSOP - PW	Reel of 2000	SN74LVC257APWR	LC257A
107	工行加	Reel of 250	SN74LVC257APWT	
	CDIP – J	Tube of 25	SNJ54LVC257AJ	SNJ54LVC257AJ
-55°C to 125°C	CFP – W	Tube of 150	SNJ54LVC257AW	SNJ54LVC257AW
T. Jan.	LCCC - FK	Tube of 55	SNJ54LVC257AFK	SNJ54LVC257AFK

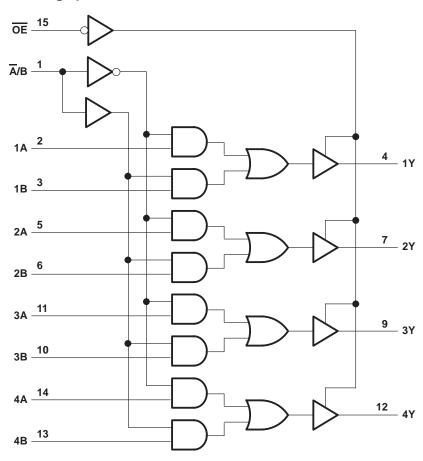
[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of

SN54LVC257A, SN74LVC257A QUADRUPLE 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS

SCAS294N - JANUARY 1993 - REVISED OCTOBER 2003

description/ordering information (continued)


Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

FUNCTION TABLE

	OUTPUT			
OE	Ā/B	Α	В	Υ
Н	Х	Χ	Χ	Z
L	L	L	X	L
L	L	Н	X	Н
L	Н	Χ	L	L
L	Н	Χ	Н	Н

logic diagram (positive logic)

Pin numbers shown are for the D, DB, J, NS, PW, RGY, and W packages.

SN54LVC257A, SN74LVC257A QUADRUPLE 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS

SCAS294N - JANUARY 1993 - REVISED OCTOBER 2003

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	–0.5 V to 6.5 V
Input voltage range, V _I (see Note 1)	
Output voltage range, V _O (see Notes 1 and 2)	$.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Input clamp current, $I_{ K }(V_{ } < 0)$	–50 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, IO	±50 mA
Continuous current through V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 3): D package	73°C/W
(see Note 3): DB package	82°C/W
(see Note 3): NS package	64°C/W
(see Note 3): PW package	108°C/W
(see Note 4): RGY package	39°C/W
Storage temperature range, T _{sta}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

- 2. The value of V_{CC} is provided in the recommended operating conditions table.
- 3. The package thermal impedance is calculated in accordance with JESD 51-7.
- 4. The package thermal impedance is calculated in accordance with JESD 51-5.

recommended operating conditions (see Note 5)

			SN54L	VC257A	SN74L	VC257A	
			MIN	MAX	MIN	MAX	UNIT
.,	Our about the me	Operating	2	3.6	1.65	3.6	
VCC	Supply voltage	Data retention only	1.5		1.5		V
		V _{CC} = 1.65 V to 1.95 V			0.65 × V _{CC}		
\vee_{IH}	High-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$			1.7		V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2		2		
		V _{CC} = 1.65 V to 1.95 V				$0.35 \times V_{CC}$	
VIL	Low-level input voltage	V _{CC} = 2.3 V to 2.7 V				0.7	V
		V _{CC} = 2.7 V to 3.6 V		0.8		0.8	
٧ı	Input voltage	•	0	5.5	0	5.5	V
٧o	Output voltage		0	Vcc	0	Vcc	V
		V _{CC} = 1.65 V				-4	
	I Pale I seed and seed assessed	V _{CC} = 2.3 V				-8	4
ЮН	High-level output current	$V_{CC} = 2.7 \text{ V}$		-12		-12	mA
		V _{CC} = 3 V		-24		-24	
		V _{CC} = 1.65 V				4	
		V _{CC} = 2.3 V				8	
IOL Lov	Low-level output current	V _{CC} = 2.7 V		12		12	mA
		V _{CC} = 3 V		24		24	
Δt/Δν	Input transition rise or fall rate			10		10	ns/V
T _A	Operating free-air temperature		-55	125	-40	85	°C

NOTE 5: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN54LVC257A, SN74LVC257A QUADRUPLE 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS SCAS294N - JANUARY 1993 - REVISED OCTOBER 2003

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

242445	DADAMETED TEST CONDITIONS		SNS	4LVC25	7A	SN74	LVC257	4	
PARAMETER	TEST CONDITIONS	VCC	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT
	I _{OH} = -100 μA	1.65 V to 3.6 V				V _{CC} -0.2			
	I _{OH} = -100 μA	2.7 V to 3.6 V	V _{CC} -0	.2					
	I _{OH} = -4 mA	1.65 V				1.2			
VOH	I _{OH} = -8 mA	2.3 V				1.7			V
	10 40	2.7 V	2.2			2.2			
	I _{OH} = -12 mA	3 V	2.4			2.4			
	I _{OH} = -24 mA	3 V	2.2			2.2			
	Jan. 400 v.A	1.65 V to 3.6 V						0.2	V
	I _{OL} = 100 μA	2.7 V to 3.6 V			0.2				
V	I _{OL} = 4 mA	1.65 V						0.45	
VOL	I _{OL} = 8 mA	2.3 V						0.7	
	I _{OL} = 12 mA	2.7 V			0.4			0.4	
	I _{OL} = 24 mA	3 V			0.55			0.55	
lį	V _I = 5.5 V or GND	3.6 V			±5			±5	μΑ
I _{OZ}	$V_O = V_{CC}$ or GND	3.6 V			±15			±10	μΑ
Icc	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6 V			10			10	μΑ
ΔICC	One input at V _{CC} – 0.6 V, Other inputs at V _{CC} or GND	2.7 V to 3.6 V			500			500	μΑ
Ci	$V_I = V_{CC}$ or GND	3.3 V		5			5		pF
Co	$V_O = V_{CC}$ or GND	3.3 V		5			5		pF

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

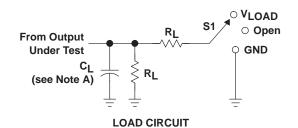
switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

			,				
PARAMETER	FROM (INPUT)	TO (OUTPUT)	VCC =	2.7 V	V _{CC} = 3.3 V ± 0.3 V		UNIT
			MIN	MAX	MIN	MAX	
4 .	A or B	V		5.4	1	4.6	
^t pd	Ā/B	Y		7.5	1	6.4	ns
t _{en}	ŌĒ	Y		6.7	1	5.6	ns
^t dis	ŌĒ	Y		4.7	0.5	4.3	ns
t _{sk(o)}						1	ns

SN54LVC257A, SN74LVC257A QUADRUPLE 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS SCAS294N - JANUARY 1993 - REVISED OCTOBER 2003

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

					SN74LVC257A							
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} =		V _{CC} =		VCC =	2.7 V	V _{CC} =	3.3 V 3 V	UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
,	A or B	V	1	13.5	1	7.4	1	5.4	1	4.6		
^t pd	Ā/B	Y	1	15.6	1	9.5	1	7.5	1	6.4	ns	
t _{en}	ŌĒ	Υ	1	14.6	1	8.7	1	6.7	1	5.6	ns	
^t dis	ŌĒ	Υ	1	15.4	1	6.7	1	4.7	1	4.3	ns	
^t sk(o)										1	ns	


operating characteristics, $T_A = 25^{\circ}C$

PARAMETER		TEST	V _{CC} = 1.8 V	V _{CC} = 2.5 V	VCC = 3.3 V	LINUT
	FARAWETER	CONDITIONS	TYP	TYP	TYP	UNIT
C _{pd}	Power dissipation capacitance	f = 10 MHz	13.5	14.5	15.5	pF

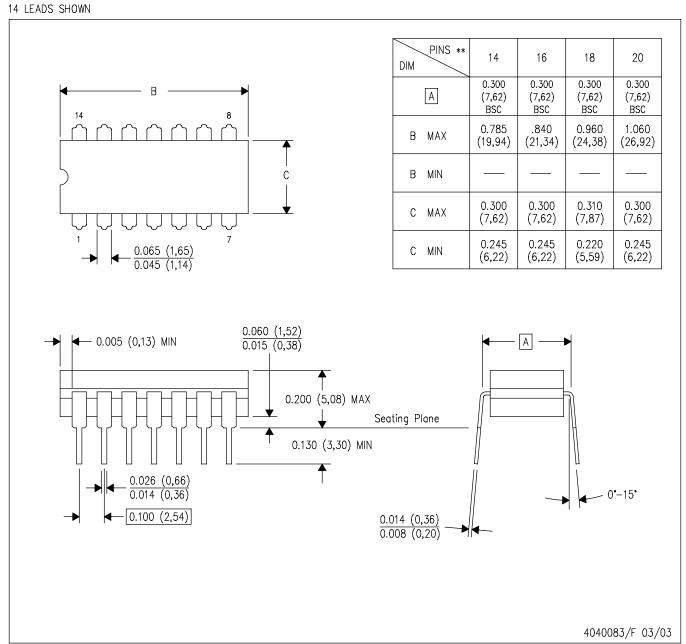
SN54LVC257A, SN74LVC257A QUADRUPLE 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS


SCAS294N - JANUARY 1993 - REVISED OCTOBER 2003

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	VLOAD
tPHZ/tPZH	GND

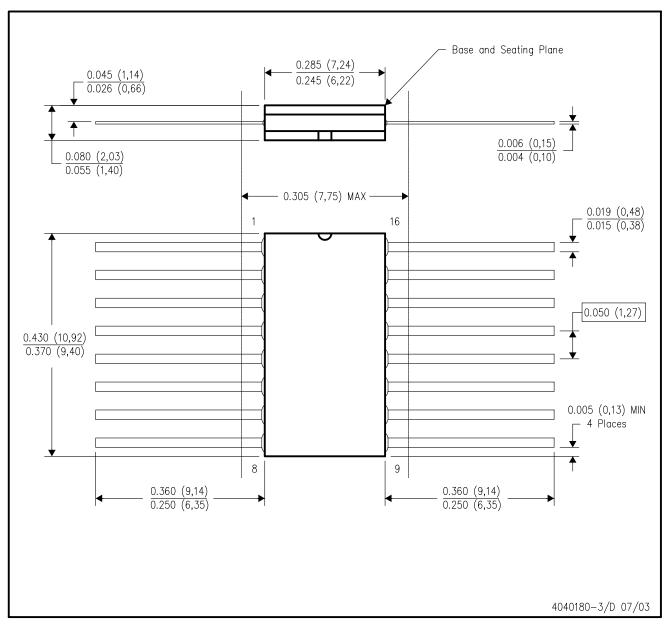
V	INF	PUTS		V		_	V
VCC	٧ _I	t _r /t _f	VM	VLOAD	CL	RL	$v_{\scriptscriptstyle\Delta}$
1.8 V \pm 0.15 V	VCC	≤2 ns	V _{CC} /2	2×V _{CC}	30 pF	1 k Ω	0.15 V
2.5 V \pm 0.2 V	VCC	≤2 ns	V _{CC} /2	2×V _{CC}	30 pF	500 Ω	0.15 V
2.7 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
3.3 V \pm 0.3 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V



NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω .
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.
- H. All parameters and waveforms are not applicable to all devices.

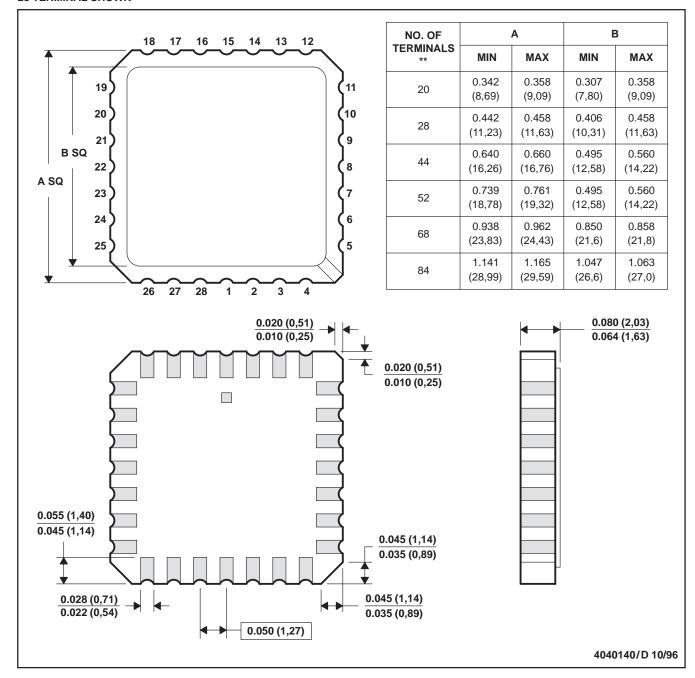
Figure 1. Load Circuit and Voltage Waveforms



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F16)

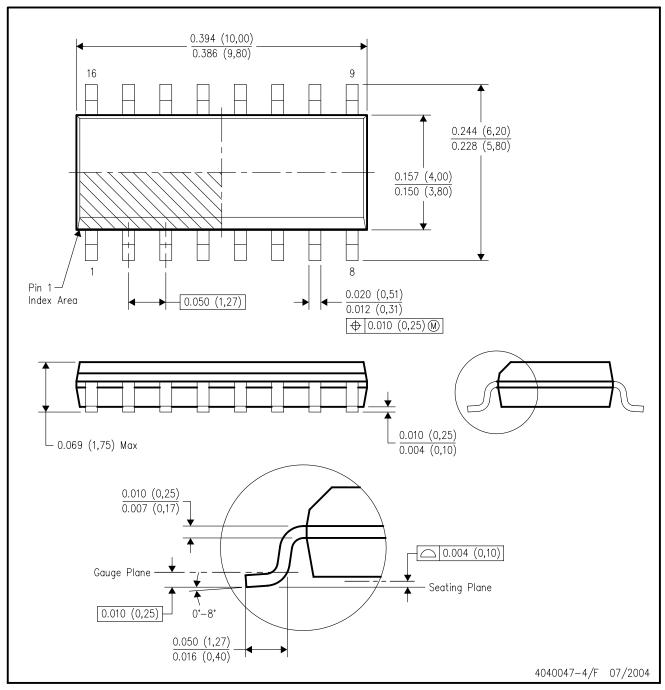
CERAMIC DUAL FLATPACK


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP1-F16 and JEDEC MO-092AC

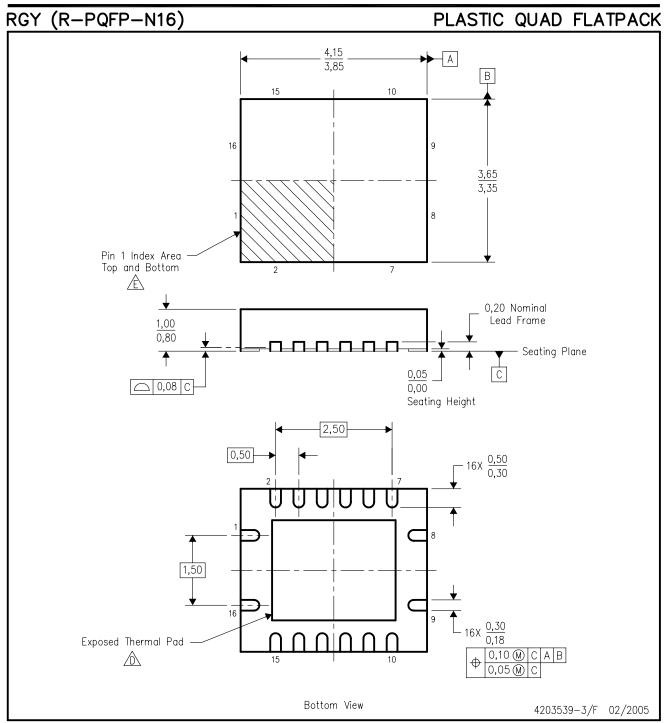
FK (S-CQCC-N**)

28 TERMINAL SHOWN

LEADLESS CERAMIC CHIP CARRIER



- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a metal lid.
 - D. The terminals are gold plated.
 - E. Falls within JEDEC MS-004


D (R-PDSO-G16)

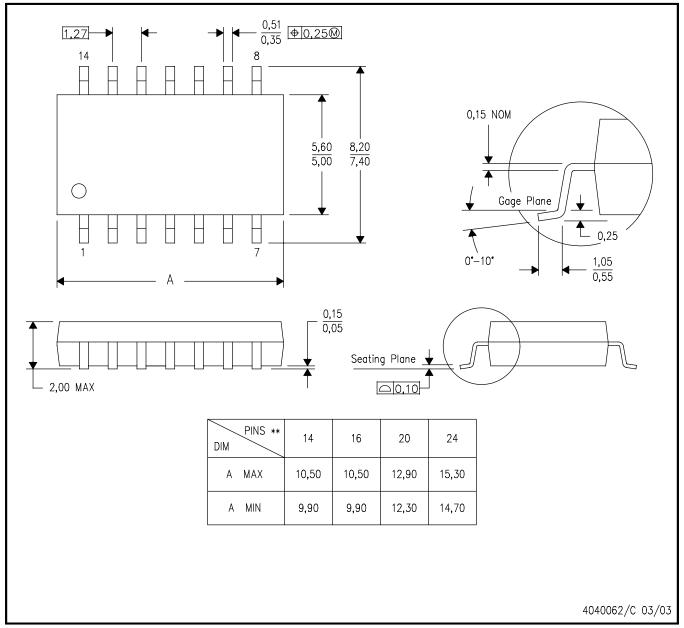
PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AC.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) package configuration.
- The package thermal pad must be soldered to the board for thermal and mechanical performance. See the Product Data Sheet for details regarding the exposed thermal pad dimensions.
- Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated.

 The Pin 1 identifiers are either a molded, marked, or metal feature.
- F. Package complies to JEDEC MO-241 variation BB.

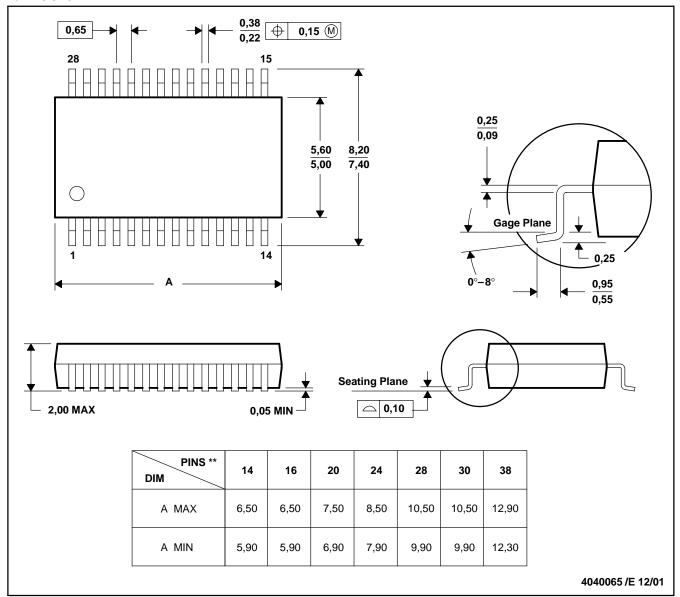


MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

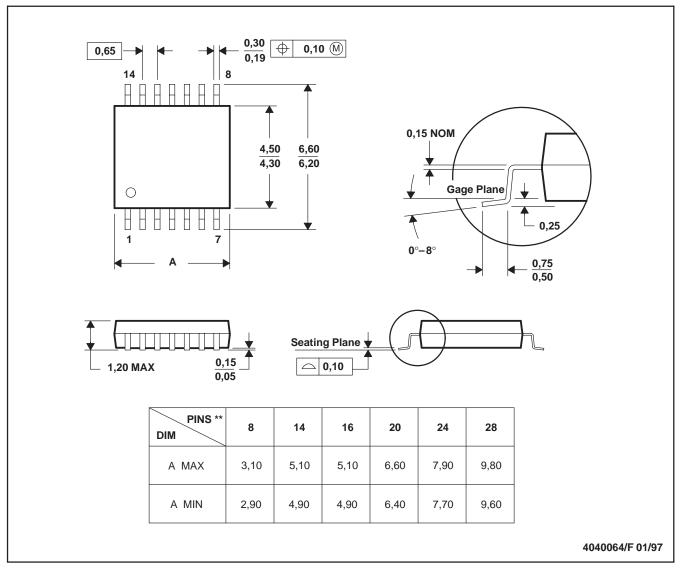

- . All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.


- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265