Data sheet acquired from Harris Semiconductor SCHS200D November 1997 - Revised October 2003 ## High-Speed CMOS Logic Decade Counter/Divider with 10 Decoded Outputs #### **Features** - · Fully Static Operation - · Buffered Inputs - Common Reset - Positive Edge Clocking - Typical $f_{MAX} = 50MHz$ at $V_{CC} = 5V$, $C_L = 15pF$, $T_A = 25^{o}C$ - Fanout (Over Temperature Range) - Standard Outputs...... 10 LSTTL Loads - Bus Driver Outputs 15 LSTTL Loads - Wide Operating Temperature Range . . . -55°C to 125°C - Balanced Propagation Delay and Transition Times - Significant Power Reduction Compared to LSTTL Logic ICs - HC Types - 2V to 6V Operation - High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} at V_{CC} = 5V #### Description The 'HC4017 is a high speed silicon gate CMOS 5-stage Johnson counter with 10 decoded outputs. Each of the decoded outputs is normally low and sequentially goes high on the low to high transition clock period of the 10 clock period cycle. The CARRY (TC) output transitions low to high after OUTPUT 10 goes from high to low, and can be used in conjunction with the CLOCK ENABLE (CE) to cascade several stages. The CLOCK ENABLE input disables counting when in the high state. A RESET (MR) input is also provided which when taken high sets all the decoded outputs, except "0", low. The device can drive up to 10 low power Schottky equivalent loads. #### **Ordering Information** | PART NUMBER | TEMP. RANGE
(°C) | PACKAGE | |---------------|---------------------|--------------| | CD54HC4017F3A | -55 to 125 | 16 Ld CERDIP | | CD74HC4017E | -55 to 125 | 16 Ld PDIP | | CD74HC4017M | -55 to 125 | 16 Ld SOIC | | CD74HC4017MT | -55 to 125 | 16 Ld SOIC | | CD74HC4017M96 | -55 to 125 | 16 Ld SOIC | | CD74HC4017NSR | -55 to 125 | 16 Ld SOP | | CD74HC4017PW | -55 to 125 | 16 Ld TSSOP | | CD74HC4017PWR | -55 to 125 | 16 Ld TSSOP | NOTE: When ordering, use the entire part number. The suffixes 96 and R denote tape and reel. The suffix T denotes a small-quantity reel of 250. #### **Pinout** CD54HC4017 (CERDIP) CD74HC4017 (PDIP, SOIC, SOP, TSSOP) TOP VIEW #### Functional Diagram #### TRUTH TABLE | СР | CE | MR | OUTPUT STATE † | |----------|----------|----|----------------------| | L | X | L | No Change | | Х | Н | L | No Change | | Х | Х | Н | "0" = H, "1"-"9" = L | | 1 | L | L | Increments Counter | | \ | Х | L | No Change | | Х | 1 | L | No Change | | Н | ↓ | L | Increments Counter | H = High Level L = Low Level \uparrow = High to Low Transition \downarrow = Low to High Transition X = Don't Care. † If n < 5 TC = H, Otherwise = L #### **Absolute Maximum Ratings** # DC Supply Voltage, V $_{CC}$... -0.5V to 7V DC Input Diode Current, I $_{IK}$ For V $_{I}$ < -0.5V or V $_{I}$ > V $_{CC}$ + 0.5V ± 20 mA DC Output Diode Current, I $_{OK}$ For V $_{O}$ < -0.5V or V $_{O}$ > V $_{CC}$ + 0.5V ± 20 mA DC Output Source or Sink Current per Output Pin, I $_{O}$ For V $_{O}$ > -0.5V or V $_{O}$ < V $_{CC}$ + 0.5V ± 25 mA DC V $_{CC}$ or Ground Current, I $_{CC}$ or I $_{GND}$... ± 50 mA #### **Operating Conditions** | - p | |---| | Temperature Range, T _A 55°C to 125°C | | Supply Voltage Range, V _{CC} | | HC Types2V to 6V | | HCT Types | | DC Input or Output Voltage, V _I , V _O | | Input Rise and Fall Time | | 2V | | 4.5V 500ns (Max) | | 6V | #### Thermal Information | Package Thermal Impedance, θ_{JA} (see Note 1): | |--| | E (PDIP) Package67°C/W | | M (SOIC) Package73°C/W | | NS (SOP) Package64°C/W | | PW (TSSOP) Package108°C/W | | Maximum Junction Temperature | | Maximum Storage Temperature Range65°C to 150°C | | Maximum Lead Temperature (Soldering 10s)300°C | | (SOIC - Lead Tips Only) | CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. #### NOTE: 1. The package thermal impedance is calculated in accordance with JESD 51-7. #### **DC Electrical Specifications** | | со | | TEST
CONDITIONS | | /cc 25°C | | | -40°C T | O 85°C | -55°C T | | | | | | | | |-----------------------------|-----------------|--|---------------------|-----|----------|------|------|---------|--------|---------|------|-------|------|---|------|---|-----| | PARAMETER | SYMBOL | V _I (V) | I _O (mA) | (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | | | | | | High Level Input | V _{IH} | - | - | 2 | 1.5 | - | - | 1.5 | - | 1.5 | - | V | | | | | | | Voltage | | | | 4.5 | 3.15 | - | - | 3.15 | - | 3.15 | - | V | | | | | | | | | | | 6 | 4.2 | - | - | 4.2 | - | 4.2 | - | V | | | | | | | Low Level Input | V _{IL} | - | - | 2 | - | - | 0.5 | - | 0.5 | - | 0.5 | V | | | | | | | Voltage | | | | 4.5 | - | - | 1.35 | - | 1.35 | - | 1.35 | V | | | | | | | | | | | 6 | - | - | 1.8 | - | 1.8 | - | 1.8 | V | | | | | | | High Level Output | V _{OH} | V _{IH} or V _{IL} | -0.02 | 2 | 1.9 | - | - | 1.9 | - | 1.9 | - | V | | | | | | | Voltage
CMOS Loads | | | -0.02 | 4.5 | 4.4 | - | - | 4.4 | - | 4.4 | - | V | | | | | | | CIVIOS LOAGS | | | -0.02 | 6 | 5.9 | - | - | 5.9 | - | 5.9 | - | V | | | | | | | High Level Output | 7 | | - | - | - | - | - | - | - | - | - | V | | | | | | | Voltage
TTL Loads | | | | -4 | 4.5 | 3.98 | - | - | 3.84 | - | 3.7 | - | V | | | | | | TTE LOAGS | | | -5.2 | 6 | 5.48 | - | - | 5.34 | - | 5.2 | - | V | | | | | | | Low Level Output | V _{OL} | V _{OL} V _{IH} or V _{IL} | 0.02 | 2 | - | - | 0.1 | - | 0.1 | - | 0.1 | V | | | | | | | Voltage
CMOS Loads | | | 0.02 | 4.5 | - | - | 0.1 | - | 0.1 | - | 0.1 | V | | | | | | | OWOO LOads | | | 0.02 | 6 | - | - | 0.1 | - | 0.1 | - | 0.1 | V | | | | | | | Low Level Output | 7 | | | | | | | - | - | - | - | - | - | - | - | - | V | | Voltage
TTL Loads | | | | | | | | | 4 | 4.5 | - | - | 0.26 | - | 0.33 | - | 0.4 | | TTE LOAUS | | | 5.2 | 6 | - | - | 0.26 | - | 0.33 | - | 0.4 | V | | | | | | | Input Leakage
Current | lı | V _{CC} or
GND | - | 6 | - | - | ±0.1 | - | ±1 | - | ±1 | μΑ | | | | | | | Quiescent Device
Current | Icc | V _{CC} or
GND | 0 | 6 | - | - | 8 | - | 80 | - | 160 | μΑ | | | | | | #### **Prerequisite for Switching Specifications** | | | TEST V _{CC} 25°C | | | | | -40°C 1 | O 85°C | -55°C T | | | |-----------------|------------------|---------------------------|-----|-----|-----|-----|---------|--------|---------|-----|-------| | PARAMETER | PARAMETER SYMBOL | | (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | Maximum Clock | f _{MAX} | - | 2 | 6 | - | - | 5 | - | 4 | - | MHz | | Frequency | | | 4.5 | 30 | - | - | 35 | - | 20 | - | MHz | | | | | 6 | 35 | - | - | 49 | - | 23 | - | MHz | | CP Pulse Width | t _W | - | 2 | 80 | - | - | 100 | - | 120 | - | ns | | | | | 4.5 | 16 | - | - | 20 | - | 24 | - | ns | | | | | 6 | 14 | - | - | 17 | - | 20 | - | ns | | MR Pulse Width | t _W | · - | 2 | 80 | - | - | 100 | - | 120 | - | ns | | | | | 4.5 | 16 | - | - | 20 | - | 24 | - | ns | | | | | 6 | 14 | - | - | 17 | - | 20 | - | ns | | Set-up Time, | t _{SU} | t _{SU} - | 2 | 75 | - | - | 95 | - | 110 | - | ns | | CE to CP | | | 4.5 | 15 | - | - | 19 | - | 22 | - | ns | | | | | 6 | 13 | - | - | 16 | - | 19 | - | ns | | Hold Time, | t _H | - | 2 | 0 | - | - | 0 | - | 0 | - | ns | | CE to CP | | | 4.5 | 0 | - | - | 0 | - | 0 | - | ns | | | | | 6 | 0 | - | - | 0 | - | 0 | - | ns | | MR Removal Time | t _{REM} | - | 2 | 5 | - | - | 5 | - | 5 | - | ns | | | | | 4.5 | 5 | - | - | 5 | - | 5 | - | ns | | | | | 6 | 5 | - | - | 5 | - | 5 | - | ns | #### Switching Specifications Input t_{r} , $t_{f} = 6 \text{ns}$ | | | TEST | V _{CC} | | 25°C | | | С ТО
°С | -55°C T | O 125 ⁰ C | | |--------------------|--------------------|-----------------------|-----------------|-----|------|-----|-----|------------|---------|----------------------|-------| | PARAMETER | SYMBOL | CONDITIONS | (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | Propagation Delay | t _{PLH} , | C _L = 50pF | 2 | - | - | 230 | - | 290 | - | 345 | ns | | CP to any Dec. Out | t _{PHL} | C _L = 50pF | 4.5 | - | - | 46 | - | 58 | - | 69 | ns | | | | C _L = 15pF | 5 | - | 19 | - | - | - | - | - | ns | | | | C _L = 50pF | 6 | - | - | 39 | - | 49 | - | 59 | ns | | CP to TC | t _{PLH,} | C _L = 50pF | 2 | - | - | 230 | - | 290 | - | 345 | ns | | | t _{PHL} | C _L = 50pF | 4.5 | - | - | 46 | - | 58 | - | 69 | ns | | | | C _L = 15pF | 5 | - | 19 | - | - | - | - | - | ns | | | | C _L = 50pF | 6 | - | - | 39 | - | 49 | - | 59 | ns | | CE to any Dec. Out | t _{PLH,} | C _L = 50pF | 2 | - | - | 250 | - | 315 | - | 375 | ns | | | | C _L = 50pF | 4.5 | - | - | 50 | - | 63 | - | 75 | ns | | | | C _L = 15pF | 5 | - | 21 | - | - | - | - | - | ns | | | | C _L = 50pF | 6 | - | - | 43 | - | 54 | - | 64 | ns | | CE to TC | t _{PLH} , | C _L = 50pF | 2 | - | - | 250 | - | 315 | - | 375 | ns | | | t _{PHL} | C _L = 50pF | 4.5 | - | - | 50 | - | 63 | - | 75 | ns | | | | C _L = 15pF | 5 | - | 21 | - | - | - | - | - | ns | | | | C _L = 50pF | 6 | - | _ | 43 | - | 54 | - | 64 | ns | #### Switching Specifications Input t_r , $t_f = 6ns$ (Continued) | | | TEST | V _{CC} | 25°C | | -40°C TO
85°C | | -55°C TO 125°C | | | | |--|-------------------------------------|-----------------------|-----------------|------|-----|------------------|-----|----------------|-----|-----|-------| | PARAMETER | SYMBOL | CONDITIONS | (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | MR to any Dec. Out | t _{PLH} , | C _L = 50pF | 2 | - | - | 230 | - | 290 | - | 345 | ns | | | t _{PHL} | C _L = 50pF | 4.5 | - | - | 46 | - | 58 | - | 69 | ns | | | | C _L = 15pF | 5 | - | 19 | - | i | - | - | - | ns | | | | C _L = 50pF | 6 | - | - | 39 | - | 49 | - | 59 | ns | | MR to TC | t _{PLH} , | C _L = 50pF | 2 | - | - | 230 | i | 290 | - | 345 | ns | | | [†] PHL | C _L = 50pF | 4.5 | - | - | 46 | - | 58 | - | 69 | ns | | | | C _L = 15pF | 5 | - | 19 | - | - | - | - | - | ns | | | | C _L = 50pF | 6 | - | - | 39 | - | 49 | - | 59 | ns | | Transition Time TC, Dec. Out | t _{TLH} , t _{THL} | C _L = 50pF | 2 | - | - | 75 | - | 95 | - | 110 | ns | | | | C _L = 50pF | 4.5 | - | - | 15 | - | 19 | - | 22 | ns | | | | C _L = 50pF | 6 | - | - | 13 | - | 16 | - | 19 | ns | | Input Capacitance | C _{IN} | C _L = 50pF | - | - | - | 10 | - | 10 | - | 10 | pF | | Maximum CP Frequency | f _{MAX} | C _L = 15pF | 5 | - | 60 | - | - | - | - | - | MHz | | Power Dissipation Capacitance (Notes 2, 3) | C _{PD} | C _L = 15pF | 5 | - | 39 | - | - | - | - | - | pF | #### NOTES: - C_{PD} is used to determine the dynamic power consumption, per package. P_D = V_{CC}² f_i ∑∈ C_L V_{CC}² fo where f_i = input frequency, f₀ = output frequency, C_L = output load capacitance, V_{CC} = supply voltage. #### Test Circuits and Waveforms NOTE: Outputs should be switching from 10% V $_{CC}$ to 90% V $_{CC}$ in accordance with device truth table. For f_{MAX} , input duty cycle = 50%. FIGURE 1. HC CLOCK PULSE RISE AND FALL TIMES AND **PULSE WIDTH** FIGURE 2. HC TRANSITION TIMES AND PROPAGATION **DELAY TIMES, COMBINATION LOGIC** #### Test Circuits and Waveforms (Continued) FIGURE 3. HC SETUP TIMES, HOLD TIMES, REMOVAL TIME, AND PROPAGATION DELAY TIMES FOR EDGE TRIGGERED SEQUENTIAL LOGIC CIRCUITS #### **Timing Diagrams** FIGURE 4. FIGURE 5. 26-Sep-2005 #### **PACKAGING INFORMATION** | Orderable Device | Status ⁽¹⁾ | Package
Type | Package
Drawing | Pins | Package
Qty | Eco Plan ⁽²⁾ | Lead/Ball Finish | MSL Peak Temp ⁽³⁾ | |------------------|-----------------------|-----------------|--------------------|------|----------------|----------------------------|------------------|------------------------------| | 8601101EA | ACTIVE | CDIP | J | 16 | 1 | TBD | Call TI | Level-NC-NC-NC | | CD54HC4017F3A | ACTIVE | CDIP | J | 16 | 1 | TBD | Call TI | Level-NC-NC-NC | | CD74HC4017E | ACTIVE | PDIP | N | 16 | 25 | Pb-Free
(RoHS) | CU NIPDAU | Level-NC-NC-NC | | CD74HC4017EE4 | ACTIVE | PDIP | N | 16 | 25 | Pb-Free
(RoHS) | CU NIPDAU | Level-NC-NC-NC | | CD74HC4017M | ACTIVE | SOIC | D | 16 | 40 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC4017M96 | ACTIVE | SOIC | D | 16 | 2500 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC4017M96E4 | ACTIVE | SOIC | D | 16 | 2500 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC4017ME4 | ACTIVE | SOIC | D | 16 | 40 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC4017MT | ACTIVE | SOIC | D | 16 | 250 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC4017MTE4 | ACTIVE | SOIC | D | 16 | 250 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC4017NSR | ACTIVE | SO | NS | 16 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC4017NSRE4 | ACTIVE | SO | NS | 16 | 2000 | Green (RoHS &
no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC4017PW | ACTIVE | TSSOP | PW | 16 | 90 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC4017PWE4 | ACTIVE | TSSOP | PW | 16 | 90 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC4017PWR | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC4017PWRE4 | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS &
no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC4017PWT | ACTIVE | TSSOP | PW | 16 | 250 | Green (RoHS &
no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC4017PWTE4 | ACTIVE | TSSOP | PW | 16 | 250 | Green (RoHS &
no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | $^{^{(1)}}$ The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. TBD: The Pb-Free/Green conversion plan has not been defined. **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) ⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. #### PACKAGE OPTION ADDENDUM 26-Sep-2005 (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. This package is hermetically sealed with a ceramic lid using glass frit. - D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only. - E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20. #### N (R-PDIP-T**) #### PLASTIC DUAL-IN-LINE PACKAGE 16 PINS SHOWN - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A). - The 20 pin end lead shoulder width is a vendor option, either half or full width. ### D (R-PDSO-G16) #### PLASTIC SMALL-OUTLINE PACKAGE - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). - D. Falls within JEDEC MS-012 variation AC. #### **MECHANICAL DATA** #### NS (R-PDSO-G**) #### 14-PINS SHOWN #### PLASTIC SMALL-OUTLINE PACKAGE - . All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15. #### PW (R-PDSO-G**) #### 14 PINS SHOWN #### PLASTIC SMALL-OUTLINE PACKAGE NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-153 #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | Products | | Applications | | |------------------|------------------------|--------------------|---------------------------| | Amplifiers | amplifier.ti.com | Audio | www.ti.com/audio | | Data Converters | dataconverter.ti.com | Automotive | www.ti.com/automotive | | DSP | dsp.ti.com | Broadband | www.ti.com/broadband | | Interface | interface.ti.com | Digital Control | www.ti.com/digitalcontrol | | Logic | logic.ti.com | Military | www.ti.com/military | | Power Mgmt | power.ti.com | Optical Networking | www.ti.com/opticalnetwork | | Microcontrollers | microcontroller.ti.com | Security | www.ti.com/security | | | | Telephony | www.ti.com/telephony | | | | Video & Imaging | www.ti.com/video | | | | Wireless | www.ti.com/wireless | Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265