
PS700Driver C
Battery Monitor Driver C Code
1.0 PRODUCT OVERVIEW

The PS700Driver C is the code for the PS700 battery
monitor driver written in the C programming language. It
is patterned after the PS700Driver, written in PIC16F
compatible assembly language. PS700Driver C is
designed to be portable with limited system dependen-
cies. Final implementation and integration requires a
custom API for:

• Execution of the fuel gauge functions
• Data exchange

• Communication with the PS700

The PS700Driver C is a single C language source file
developed in the Microsoft® Visual C++® environment.

Efficient communication is provided through an industry
standard SMBus/I2C™ compatible 2-wire communica-
tions interface. This interface allows the system to
determine accurate battery status for effective system
power management and for communication to the end
user. A battery management solution, utilizing the

PS700, delivers both space and total system
component cost savings for a wide variety of battery
operated applications.

2.0 PS700DRIVER C
ARCHITECTURE

The PS700Driver C is a block of C programming
language code providing the core fuel gauge function-
ality for the PS700. The PS700Driver C is a module
that resides in the application and is callable by the
application’s primary firmware. The PS700Driver C
interacts with the host using:

1. Calls by the host to PS700Driver C functions.
2. Data exchange through global variables

(common memory).
3. Calls to the host by PS700Driver C for SMBus

communication.

 Figure 2-1 is a block diagram of this architecture.

FIGURE 2-1: PS700DRIVER C ARCHITECTURE EXAMPLE

Host

PS700Driver C

PS700
Battery

API
 2004 Microchip Technology Inc. Advance Information DS21899A-page 1

PS700Driver C
2.1 Code Organization

2.1.1 FILES
• p7fgc.cpp – fuel gauge, c code
• p7fgc.h – fuel gauge, header file
• p7fgc_typedef.h – data type definitions
• p7fgc_dev.h – memory map definitions for

PS700 hardware registers

2.1.2 DATA TYPES

A header file is used for system independent type
definitions. The following file is used for the Microsoft
Visual C++ on a PC.

EXAMPLE 2-1: FILE: p7fgc_typedef.h

2.1.3 FUNCTIONS PROVIDED

The PS700Driver C is divided into the callable
functions in Table 2-1. These functions are similar to
the subcommands used in the PIC® device-based
driver:

• TD_int1 p7fgc_proc()

• TD_int1 p7fgc_reset()

• TD_int1 p7fgc_init()

• TD_int1 p7fgc_capset(TD_int2 cap_mah)

• TD_int1 p7fgc_version(TD_uint2 *ver)

TABLE 2-1: PS700DRIVER C FUNCTIONS

//---------------------------------------
//--- type definitions
//---------------------------------------
#ifndef _P7FGC_TYPEDEF_H
#define _P7FGC_TYPEDEF_H
typedef char TD_int1;
typedef unsigned char TD_uint1;
typedef short TD_int2;
typedef unsigned short TD_uint2;
typedef int TD_int;
typedef int TD_int4;
typedef unsigned int TD_uint4;
#endif

Type Name Definition

TD_int1 p7fgc_proc() Return Value:
Function returns 0 = no error, !0 = error

Description:
Performs fuel gauge processing sequence communicating with the
PS700 as needed

TD_int1 p7fgc_reset() Return Value:
Function returns 0 = no error, !0 = error

Description:
Ensures the fuel gauge is in a “coherent” state after system Reset

TD_int1 p7fgc_init() Return Value:
Function returns 0 = no error, !0 = error

Description:
Executed once to upload static parameters from a newly installed battery

TD_int1 p7fgc_capset(TD_int2
cap_mah)

Return Value:
Function returns 0 = no error, !0 = error

Description:
Executed to set the fuel gauge to an arbitrary capacity value

Arguments:
 “cap_mah” – desired capacity value in units of mAh

TD_int1 p7fgc_version(TD_uint2
*ver)

Return Value:
Function returns 0 = no error, !0 = error

Description:
Return version number

Arguments:
 “ver” – pointer to storage for version number
DS21899A-page 2 Advance Information  2004 Microchip Technology Inc.

PS700Driver C
2.1.4 ADDITIONAL FUNCTIONS

Since communication between the host and the PS700 is
system dependent, the following SMBus communication
functions must be written by the integrator:

• TD_int1 p7fgc_p7_read(TD_int2
p7_buffer, TD_int1 *ram_buffer,
TD_int1 nbytes)

• TD_int1 p7fgc_p7_write(TD_int1
*ram_buffer, TD_int2 p7_buffer,
TD_int1 nbytes)

TABLE 2-2: SMBus COMMUNICATION FUNCTIONS

2.2 Math

All calculations are performed in integer math. In lieu of
the explicit math firmware functions in the
PS700Driver, the PS700Driver C compiler is allowed to
automatically link library routines for math operations
(+, -, *, /).

2.3 Data

Global variables, used for the variables and registers in
the PS700Driver, are defined to match the size and
type. Global variable names are prefaced with
“g_p7fg_”. The full suite of variables is defined in
p7fgc.h.

2.4 Memory Map

The memory locations of the PS700 hardware registers
are defined in p7fgc_dev.h.

Type Name Definition

TD_int1 p7fgc_p7_read Return Value:
Function returns 0 = no error, !0 = error

Description:
Host API routine used to read data from the PS700

Arguments:
“p7_buffer”: PS700 memory address – source data
“ram_buffer”: destination address
“nbytes”: number of bytes to transfer

TD_int1 p7fgc_p7_write Return Value:
Function returns 0 = no error, !0 = error

Description:
Host API routine used to write data to the PS700

Arguments:
“ram_buffer”: memory address – source data
“p7_buffer”: destination address in PS700
“nbytes”: number of bytes to transfer

Note: These functions refer to PS700 memory addresses as 16-bit values (i.e., 0000bbaa aaaaaaaa – defines
10-bit address “aaaaaaaaaa” in bank “bb”).

Each routine (above) is required to set global variable flag “g_p7fgc_cerr = 1” to indicate a communication
error of any sort. This flag is cleared externally to these routines.
 2004 Microchip Technology Inc. Advance Information DS21899A-page 3

PS700Driver C
3.0 EXCEPTIONS

The PS700Driver C is intended to be the “C” version of
the PS700Driver for the PIC microcontroller. The
design of the PS700Driver was dictated in some cases
by the limited resources of the PIC microcontroller.
Those design compromises were carried forward into
the PS700Driver C, not out of necessity, but to maintain
parity between the two. In other areas, the
PS700Driver C deviated slightly from the PS700Driver
for PIC microcontrollers for portability, comprehending
the reality of various and unknown host platforms. Fea-
tures in each category are discussed individually
below.

3.1 PS700Driver C Differences

3.1.1 DATA TRANSFER TO/FROM PS700

The PS700Driver C makes no assumptions concerning
RAM data storage and/or alignment. All “blocks” of data
transferred to/from the PS700 are moved one multi-
byte variable at a time, or a block is transferred into a
temporary byte array and each component variable is
loaded individually. The PS700Driver can transfer a
block of data to/from the PS700 and directly overlay
variables in the microcontroller RAM. See Table 3-1 for
the affected modules.

TABLE 3-1: DATA TRANSFER MODULES

3.2 PS700Driver C Continuance of
PS700Driver Compromises

The following features were voluntarily maintained as
implemented in the PS700Driver, which has limited PIC
architecture resources. Additional resources available
to the PS700Driver C may create opportunities to
revise these features, as needed, to improve
performance.

3.2.1 PARTIAL STORAGE OF VEOD LUT

To minimize communication with the PS700 and RAM
usage, only one row of the 2D VEOD LUT, correspond-
ing to the current temperature, is stored locally and used
until the temperature changes. Routine communication
could be eliminated totally by uploading the entire 4 by 8
table into RAM during initialization.

3.2.2 OPERATIONAL FLAGS

The PS700Driver C uses 1-byte variables set to ‘0’ or
‘1’ to implement the operational “bit” flags in the
PS700Driver.

3.2.3 SELF-DISCHARGE

The self-discharge algorithm was implemented by
equation. A self-discharge Look-up Table (LUT) has
been historically used and may be preferred.

3.2.4 NON-INTERPOLATED RESIDUAL
CAPACITY

To minimize code space and execution time, the resid-
ual capacity LUT was implemented with simple binning;
interpolation may be preferred. To mitigate this compro-
mise, the temperature axis is defined specifically for
residual capacity independent of the temperature axis
for the VEOD LUT.

3.2.5 MATH

Math operations in the PS700Driver are staged to
accommodate integer math and a maximum 16x16
multiply and a 32/16 divide. If host math is not
constrained as such, two issues can be eliminated or
modified:

• Scaling operands in g_p7fgc_proc_cap to fit
16x16 multiplies

• Piecemeal implementation of the self-discharge
equation to fit 16x16 multiplies (p7fgc_sdchg())

Function Description

p7fgc_sync_0() Read/upload static variables from PS700 EEPROM to fuel gauge RAM

p7fgc_sync_1() Read/upload fuel gauge context from PS700 RAM to fuel gauge RAM

p7fgc_dsync_1() Write/download fuel gauge context from fuel gauge RAM to PS700 RAM
DS21899A-page 4 Advance Information  2004 Microchip Technology Inc.

PS700Driver C
4.0 IMPLEMENTATION

The remainder of this document describes the
functionality of the PS700Driver for PIC micro-
controllers. The differences between the PIC assembly
code version (PS700Driver) and the “C” code version
(PS700Driver C) have been highlighted in Section 3.0
“Exceptions”.

The PS700Driver, as implemented on the Microchip
PowerInfo™ 2 configuration interface, is used as an
example. The PowerInfo 2 (PS051) is available in the
PS7070EV evaluation kit for the PS700. As
implemented on the PowerInfo 2, the PS700Driver is
allocated the following resources:

• Program memory – page 3
(addresses x1800-x1FFF)

• RAM – Bank 3 (addresses x190-x1EF)

Because the PowerInfo 2 operates as a slave to the
remote host master, two custom commands were
added to the PowerInfo 2 repertoire for remote control
of the PS700Driver:

1. Read/write PowerInfo 2 RAM (previously, only
Bank 1 read/write was available).

2. Execute the PS700Driver.

Executing the PS700Driver is a two step process. First,
write the subcommand to RAM and then call the
PS700Driver.

The PS700Driver communication needs are supplied
by the standard PowerInfo 2 SMBus state controller.
Because this controller is “script-driven” internally, it
can implement arbitrary protocol(s). The custom
SMBus API needed for the PS700Driver merely
generates the script for PS700 SMBus protocol (based
on the desired addresses and byte count). Control is
then passed to the PowerInfo 2 SMBus module to
execute the transaction.

4.1 Application Requirements

The PS700Driver requires calls from the application
firmware at regular intervals (see Section 4.2
“Execution Model”) and callable SMBus I/O
routine(s) for communication with the battery (see
Section 4.3 “SMBus Communication”).

4.2 Execution Model

The PS700Driver is called by the host firmware as a
routine task. The interval between calls can vary in
length from seconds to hours but it’s efficacy depends
on conditions. A Fuel Gauge (FG) status bit, “TURBO”,
can be used as an indication to shorten the interval if
the fuel gauge is close to a time critical trigger point,
such as End-Of-Charge (EOC) or End-Of-Discharge
(EOD). The PS700Driver has a single entry point with
multiple subfunctions. The subfunction command code
is written to the memory scratchpad before the driver is
called. Currently, four subfunctions are defined:

1. Reset – Executed once when the host firmware
itself is initialized. Reset ensures the fuel gauge
is in a coherent state after system start-up.

2. Initialization – Executed once to upload static
parameters from a newly installed battery. Initial-
ization could be automatically executed by FG
processing but a separate subcommand gives
the host more latitude in scheduling this pro-
cess, which requires additional (non-routine)
communication with the battery.

3. Capacity Set – Executed to force the fuel gauge
to register an arbitrary capacity value.

4. Fuel Gauging – Executed at a routine interval;
reads then processes dynamic data from the
PS700. Results are stored in RAM.

4.3 SMBus Communication

The PS700Driver requires SMBus I/O for communica-
tion with the PS700. Because this functionality is highly
system dependent, it is not part of the PS700Driver.
The application must provide callable modules to
implement the PS700 SMBus protocol for reading and
writing.

The PS700Driver provides a device memory address
(PS700), local memory address (RAM) and a byte
count to either a “read block” or “write block” routine.
Upon return from the communication routine(s), a
failure is indicated by FLAG_P7FG_COMM_ERR = 1.
No action is taken on FLAG_P7FG_COMM_ERR if the
transaction is successful.

If the application’s SMBus routines cannot be altered,
custom SMBus API firmware must provide an interface
which supports the PS700 SMBus protocol between
the application and the PS700Driver.
 2004 Microchip Technology Inc. Advance Information DS21899A-page 5

PS700Driver C
5.0 HOST

5.1 PS700Driver Interface

As described above, the PS700Driver is a modular
“add on” to the application firmware. The application
and the PS700Driver interface in only three ways:

1. Host calls the PS700Driver for execution.

2. The PS700Driver calls the host for SMBus
facilities.

3. Common RAM provides a passive data
interface.

5.1.1 EXECUTION

The host is expected to call the PS700Driver on a
routine basis. To minimize the burden on the host, the
interval between calls can vary from seconds to hours.
The PS700Driver status (TURBO) bit can indicate the
need to shorten the interval during time critical junc-
tures. A nominal service interval could be 1 minute
(normal) and 10 seconds (critical). When called, the
PS700Driver expects to complete execution without
significant interruption. The host execution flow chart
appears in Figure 5-1.

FIGURE 5-1: HOST EXECUTION FLOW CHART

If TURBO bit set in status,
Fuel Gauge is requesting more frequent service

COLD START P7FG SERVICE

P7FG: RESET

P7FG: PROC

P7FG_STATUS[TURBO]

HOST_SVC_TIMER = (SHORT) HOST_SVC_TIMER = (NORM)

P7FG_STATUS[COMM_ERR]

P7FG_STATUS[NEW_BATT]

P7FG: INIT

RETURN

YES

YES

NO

NO

YES

YES

NO

YES

Fuel Gauge processing

NEW_BATT detect
requires that the Fuel Gauge
upload static data from P7
(cal factors, etc.)

Reset/Initialize
the Fuel Gauge to known
state
DS21899A-page 6 Advance Information  2004 Microchip Technology Inc.

PS700Driver C
5.1.2 SMBus COMMUNICATION

During execution, the PS700Driver must rely on host
facilities for SMBUS transactions. Because RAM space
is limited, data is read from the PS700 one register at a
time as needed. To simplify, all communication is done
using Block mode; therefore, only two constructs are
needed: (1) read block and (2) write block. A transac-
tion must have three pieces of data: (1) device memory
address, (2) local RAM memory address and (3) byte
count. In the PS700Driver, this information is available
in three temporary registers.

5.1.3 DATA

All data/parameters required by the PS700Driver are
kept in RAM. Static parameters read from the PS700
are stored in RAM. Results of fuel gauge processing
are also stored in system RAM. The data interface
between the host and the PS700Driver is the common
memory model.

5.2 Resources

The host must allocate resources (a block of program
memory and a block of RAM) to the PS700Driver.
Unaltered, the PS700Driver requires a maximum of 2k
words of program memory and 96 bytes of RAM. Any
changes to the PS700Driver may also change the
resources required.
 2004 Microchip Technology Inc. Advance Information DS21899A-page 7

PS700Driver C
6.0 DRIVER

6.1 Data

The PS700Driver data is located both remotely in the
battery and locally in system RAM (see Figure 6-1).

FIGURE 6-1: PowerInfo™ 2 ARCHITECTURE – DATA STORAGE

6.1.1 SYSTEM RAM

All static data (parameters), dynamic data (results of
processing) and scratchpad used by PS700Driver and
available to the host is maintained in system RAM.

6.1.2 PS700 OPERATION REGISTERS

All data for PS700 hardware control is located in the
operation registers. Please see the “PS700 Data
Sheet” (DS21760) for detailed register information.

Host Application
(PowerInfo™ 2)

Serial I/F

SMBus I/F

PS700Driver

RAM
PS700

Operation Registers

EEPROM

RAM

Battery
DS21899A-page 8 Advance Information  2004 Microchip Technology Inc.

PS700Driver C
6.1.3 PS700 EEPROM

All critical PS700 parameters, calibration factors and
learned data are stored in PS700 integrated EEPROM.
See Table 6-1 for the PS700 EEPROM map.

TABLE 6-1: PS700 EEPROM MAP

6.1.4 PS700 RAM

The PS700Driver stores fuel gauge context in PS700
RAM. The context is defined as the essential fuel
gauge data (capacity and time) used as the basis for
operation. This data is written to the PS700 RAM fol-
lowing each processing sequence. This information is

read from PS700 RAM whenever a processing
sequence is interrupted. In the case of a removable
PS700 battery pack, an interruption can occur as a
result of a pack change. Interruptions also occur if
errors are detected in communication. See Table 6-2
for the PS700 RAM map.

TABLE 6-2: PS700 RAM MAP

Address(1) Name LEN Units Description

0x00 CF_CURR 2 N/A Calibration Factor – Gain - Current

0x02 CO_CURR 2 AD Calibration Factor – Offset – Current

0x04 CF_PACK 2 N/A Calibration Factor – Gain – Pack Voltage

0x06 CF_VCELL1 2 N/A Calibration Factor – Gain – Cell 1 Voltage

0x08 CF_VCELL2 2 N/A Calibration Factor – Gain – Cell 2 Voltage

0x0A CF_TEMP 2 N/A Calibration Factor – Gain – Temperature

0x0C CO_TEMP 2 N/A Calibration Factor – Offset – Temperature

0x0E VEOD 2 mV EOD Voltage Threshold

0x10 VEOC 2 mV EOC Voltage Threshold

0x12 IEOC 2 mA EOC Current Threshold

0x14 EOD_CAP 2 mAh EOD Capacity

0x16 MODE 1 bits Fuel Gauge Mode Bits

0x17 SERIAL_NO 2 N/A Serial Number – Battery ID

0x19 CAP_FULL 2 mAh Full Charge Capacity

0x1B CYCLES 2 cycles Cycle Count

0x1D VEOD_C 3 XmA VEOD LUT Current Axis

0x20 VEOD_T 7 XdegC VEOD LUT Temperature Axis

0x27 VEOD 32 XmV VEOD Voltage Threshold(s)

0x47 RCAP_T 7 XdegC RCAP LUT – Residual Capacity Temperature Axis

0x4E RCAP 8 XmAh Residual Capacity

TOTAL 86

Note 1: Address in table is relative to origin 0xA0.

Address(1) Name LEN Units Description

0x00 CAP_CYC 2 mAh Cycle Counting – Capacity Accumulation

0x02 CAP_LAST 2 mAh Cycle Counting – Last Value of Capacity

0x04 CAP_UNITS 4 500 mSmA Fuel Gauge Capacity from Last PROC Sequence

0x08 TIME_LAST 4 500 mS Device Time from Last PROC Sequence

0x0C CAP_LAST_D 4 500 mSAD Device Capacity from Last PROC Sequence

0x10 CHECKSUM 1 N/A Checksum = (sum of bytes 0x00-0x0f) + K,K = 0x12 (arbitrary bias)

TOTAL 17

Note 1: Address in table is relative to origin 0x00.
 2004 Microchip Technology Inc. Advance Information DS21899A-page 9

PS700Driver C
6.1.5 SYSTEM RAM

The PS700Driver stores fuel gauging results in system
RAM to limit the need to communicate with the PS700.
Static variables from the PS700 EEPROM are also
stored in system RAM for this reason. See Table 6-3 for
the system RAM map.

TABLE 6-3: SYSTEM RAM MAP

Address(1) Name LEN Units Description

0x00 CURR 2 mA Current – Processed ADC Result

0x02 CURR_AVG 2 mA Average Current – Capacity-based Calculation

0x04 VPACK 2 mV Pack Voltage – Processed ADC Result

0x06 VCELL1 2 mV Cell 1 Voltage – Processed ADC Result

0x08 VCELL2 2 mV Cell 2 Voltage – Processed ADC Result

0x0A TEMP 2 degC Temperature – Processed ADC Result

0x0C CAP 2 mAh Capacity

0x0E CAP_REL 1 % Relative Capacity – % of CAP_FULL

0x0F STATUS 2 bits Fuel Gauge Status – see Table 6-4

0x11 CAP_RES 2 mAh Residual Capacity

0x13 CAP_CYC 2 mAh Capacity Accumulation – Cycle Counting

0x15 CAP_LAST 2 mAh Last Value of CAP – Cycle Counting

0x17 CAP_UNITS 4 500 mSmA Capacity

0x1B TIME_LAST 4 500 mS Device Tie from Last PROC Sequence

0x1F CAP_LAST_D 4 500 mSAD Device Capacity from Last PROC Sequence

0x23 CHECKSUM 1 N/A Checksum of Fuel Gauge Context

0x24 CF_CURR 2 N/A Calibration Factor – Gain – Current

0x26 CO_CURR 2 AD Calibration Factor – Offset – Current

0x28 CF_PACK 2 N/A Calibration Factor – Gain – Pack Voltage

0x2A CF_VCELL1 2 N/A Calibration Factor – Gain – Cell 1 Voltage

0x2C CF_VCELL2 2 N/A Calibration Factor – Gain – Cell 2 Voltage

0x2E CF_TEMP 2 N/A Calibration Factor – Gain – Temperature

0x30 CO_TEMP 2 N/A Calibration Factor – Offset – Temperature

0x32 VEOD 2 mV EOD Voltage Threshold

0x34 VEOC 2 mV EOC Voltage Threshold

0x36 IEOC 2 mA EOC Current Threshold

0x38 EOD_CAP 2 mAh EOD Capacity

0x3A MODE 1 bits Fuel Gauge Mode Bits – see Table 6-5

0x3B SERIAL_NO 2 N/A Serial Number – Battery ID

0x3D CAP_FULL 2 mAh Full Charge Capacity

0x3F CYCLES 2 cycles Cycle Count

0x41 VEOD_C1 1 mAx (1) VEOD LUT Current Axis Point

0x42 VEOD_C2 1 mAx (1) VEOD LUT Current Axis Point

0x43 VEOD_C3 1 mAx (1) VEOD LUT Current Axis Point

0x44 VEOD_V1 1 mVx (2) VEOD LUT Voltage Vector (row in table)

0x45 VEOD_V2 1 mVx (2) VEOD LUT Voltage Vector (row in table)

Note 1: Address in table is relative to origin 0x190.
DS21899A-page 10 Advance Information  2004 Microchip Technology Inc.

PS700Driver C
TABLE 6-4: STATUS MAP

TABLE 6-5: MODE MAP

0x46 VEOD_V3 1 mVx (2) VEOD LUT Voltage Vector (row in table)

0x47 VEOD_V4 1 mVx (2) VEOD LUT Voltage Vector (row in table)

0x48 T_SAVE 1 degC Temperature Compare Save Register

0x49 SCRATCHPAD 14 N/A Seven 16-bit Accumulators, Command Buffer, etc.

0x57 (INTERNAL) 6 N/A Miscellaneous Internal Variables

0x5D COMM_ADR 1 N/A Communications Module, Local Ram Address

0x5E COMM_ADR_D 1 N/A Communications Module, Device Address (MSB)

0x5F Not Used 1 N/A Not Used

TOTAL 96

Bit Name Description

15 TURBO = 1, Near trigger point(s), request frequent processing interval(s)

14 Not Assigned

13 Not Assigned

12 Not Assigned

11 Not Assigned

10 Not Assigned

09 EOC = 1, EOC (End-Of-Charge) detect

08 EOD = 1, EOD (End-Of-Discharge) detect

07 Not Assigned

06 DISCHARGING Fuel gauge measuring decreasing capacity (discharging)

05 FULL_CHG Fully charged, set at EOC, reset at predetermined RSOC below EOC

04 FULL_DCHG Fully discharged, set at EOD, reset at predetermined RSOC above EOD

03 WARM_START Due to issue(s) during last processing cycle, fuel gauge read “context” (starting
point) from PS700 RAM

02 DEFAULT_CONTEXT Fuel gauge read context from battery (PS700 RAM), data was determined to be
suspect (bad checksum), default context set fuel gauge will most likely be in error
until EOD or EOC is encountered

01 NEW_BATTERY Fuel gauge detected “new” battery (i.e., serial number different), the host must
issue an “initialization” command before any processing can continue

00 COMM_ERR Communication error with battery on the next processing request, the fuel gauge
will attempt to restart by reading the previous context from the battery

Bit Name Description

7 BN_MODE_1CELL = 1: one cell, = 0: two cell

6 Not Assigned

5 Not Assigned

4 Not Assigned

3 BN_MODE_VEOD_K = 1: constant VEOD, = 0: used VEOD LUT

2 BN_MODE_RCC_DIS = 1: REMCAP compensation disabled, = 0: enabled

1 BN_MODE_SDCHG_DIS = 1: self-discharge feature disabled, = 0: enabled

0 BN_MODE_ADC_DIS = 1: disable ADC processing (low-level diag.), = 0: normal operation

TABLE 6-3: SYSTEM RAM MAP (CONTINUED)

Address(1) Name LEN Units Description

Note 1: Address in table is relative to origin 0x190.
 2004 Microchip Technology Inc. Advance Information DS21899A-page 11

PS700Driver C
7.0 PROCESSING

The PS700Driver is designed as a single thread, single
entry point callable module. Calling the PS700Driver is
a 2-step process:

1. Write subcommand code to RAM.
2. Execute PS700Driver by calling the entry point.

The main process is detailed in Figure 7-1. See
Table 7-1 for a description of the processing
commands.

FIGURE 7-1: MAIN PROCESSING FLOW CHART

TABLE 7-1: PROCESSING COMMANDS

CMND: RESET

CMND: INIT

CMND: CAPSET

CMND: PROC

RESET

INIT

CAPSET

PROC

YES

YES

YES

YES

P7FG

P7FG_X

FGX

CMND# Name Description

1 RESET Executed once when the host firmware itself is initialized – insures the fuel gauge is in a
coherent state.

2 INIT Executed once to upload static parameters from a newly installed battery.

3 CAPSET Executed to force the fuel gauge to register an arbitrary capacity value.

4 PROC Executed at a routine interval – reads then processes dynamic data from the PS700
battery. Results are stored in RAM.
DS21899A-page 12 Advance Information  2004 Microchip Technology Inc.

PS700Driver C
7.1 Subcommand RESET

The RESET subcommand is used to insure that the
fuel gauge is properly initialized after a system Reset.
The host need only call RESET and the PS700Driver
will perform the necessary housekeeping (e.g., zero
dynamic flags, clear battery ID to force “new battery”
processing, etc.). The RESET process is detailed in
Figure 7-2.

FIGURE 7-2: RESET FLOW CHART

7.2 Subcommand INIT

Subcommand INIT directs the PS700Driver to upload
static data from the battery. INIT is executed when the
PS700Driver senses a new battery. Static data is read
once from the battery and saved in system RAM, reduc-
ing as much as possible the need to communicate with
the battery. INIT could be executed automatically by the
PS700Driver, but a separate subcommand gives the
host more latitude in scheduling this process, which
requires additional (non-routine) communication with the
battery. The INIT process is detailed in Figure 7-3.

FIGURE 7-3: INIT FLOW CHART

RESET SERIAL NUMBER
FG_RAM_SERIALNO = 0

RESET

FGX

CMND: RESET

READ P7 EEPROM
(load FG RAM with static values

from battery)

INITIALIZATE FG RAM
(clear flags, status, etc.)

READ P7 RAM
(load FG "context" from battery)

INIT

FGX
 2004 Microchip Technology Inc. Advance Information DS21899A-page 13

PS700Driver C
7.3 Subcommand CAPSET

CAPSET allows the host to set the remaining capacity
initially reported by the fuel gauge. As seen in the flow
chart, it is a multi-step process. The PS700Driver will
load the value for capacity (converting it to the proper
units) and reset the PS700 accumulators. The fuel
gauge context will then be written to PS700 RAM.

FIGURE 7-4: CAPSET FLOW CHART

CAPSET

CAPSET_X

MAH2UNITS
CAP_UNITS = MAH2UNITS(CAP')

CAP = CAP'

CLEAR CAP ACCUMULATORS
WRITE P7 CLR ACCUM

CCA,CTC,DCA,DTC

CONVERT TO INTERNAL UNITS
CAP' is the aribrary set point

SET CAP

CAPSET

FGX
DS21899A-page 14 Advance Information  2004 Microchip Technology Inc.

PS700Driver C
7.4 Subcommand PROC

The PROC command performs the fuel gauging,
communicating with the PS700 as required. The results
of processing are written to system RAM. PROC is
detailed in Figure 7-5 and Figure 7-6. A description of
each block in PROC is in Table 7-2.

FIGURE 7-5: PROC FLOW CHART (PART 1)

PROC

PROC: STARTUP

PROC: ADC

PROC: CAP

PROC: SDCHG

CAP_CALC
CAPACITY-BASED DATA

Determine:
1. FG "starting point" – read FG "context" from battery if
 necessary
2. Same or new battery

NEW BATTERY
(NEED INITIALIZATION?)

NO

 New battery?
 Yes, set status (need initialization) and exit)

Process ADC results

Process CAPACITY accumulation data

Calculate an AVERAGE CURRENT (CURR_AVG)
based on delta CAP and delta TIME from last PROC

Calculate self-discharge
 (function(State-Of-Charge, temperature)

Compute capacity-based data values
1. reported capacity (convert int units -> mAh)
2. cycle count

BA
 2004 Microchip Technology Inc. Advance Information DS21899A-page 15

PS700Driver C
FIGURE 7-6: PROC FLOW CHART (PART 2)

TABLE 7-2: FUEL GAUGING (PROC) BLOCKS

CAPACITY INCREASING
(CURR_AVG > 0)

PROC: CHG PROC: DCHG

PROC: END

FGX

YES

End of process
1. calculate relative capacity CAP_REL
2. clear capacity accumulators if deemed too large
3. backup to EEPROM if necessary (CYCLES, FCC)

PROC: STATUS Set FG status

BA

Step Name Description PS700 Data I/O

1 START-UP Read fuel gauge “context” from PS700 RAM (if necessary) R 17 bytes

2 ADC PROC Read/process ADC readings R 10 bytes

3 CAP PROC Read/process capacity accumulators R 16 bytes

4 SELF DCHG Read/process timer, if timer ready –
compute self-discharge Reset timer

R 4 bytes
W 1 byte

5 CAP CALC Calculate capacity-based derivative data 0 bytes

6 STATE Charge or discharge processing 0 bytes

7 END Build status,
reset accumulators (if necessary),
write fuel gauge “context” to PS700 RAM

0 bytes
W 1 byte
W 17 bytes
DS21899A-page 16 Advance Information  2004 Microchip Technology Inc.

PS700Driver C
7.4.1 BLOCK START-UP

The start-up phase first checks communication with the
battery. If communication is possible, the PS700Driver
reads the serial number. If the serial number is different
from what had been read previously, the “new battery”
status bit is set and control is returned to the host. If the

serial number is the same, processing continues. If a
communication error occurred during the last call to
PROC, the fuel gauge context is read from the PS700
RAM to start fuel gauge calculations from a known
state. Figure 7-7 and Figure 7-8 show details of the
start-up block.

FIGURE 7-7: START-UP FLOW CHART (PART 1)

RST FLAG_COMM_ERR
SET FLAG_WARM_START

FLAG_COMM_ERR

READ P7FG_SERIALNO
FROM BATTERY

FLAG_COMM_ERR

P7FG_SERIALNO ==
PREVIOUS

FLAG_WARM_START

READ P7FG_CONTEXT
FROM BATTERY (P7 RAM)

SET
FLAG_STATUS_NEW_BATT

NO

NO

Communication error
executing previous command?

NO

User SERIAL NUMBER to identify
battery

START-UP

YES

CA B
 2004 Microchip Technology Inc. Advance Information DS21899A-page 17

PS700Driver C
FIGURE 7-8: START-UP FLOW CHART (PART 2)

7.4.2 BLOCK ADC

During ADC processing, the PS700 ADC Results reg-
isters are read individually and processed. Calibration
factors and offsets, previously read from PS700
EEPROM during INIT, are applied to the raw data using
the following equations. The prefix “CF_” indicates a
calibration factor, while the prefix “CO_” indicates a
calibration offset. Pack Voltage (VP) is calculated as
shown in Equation 7-1.

EQUATION 7-1:

In a two series cell pack, Cell Voltage 2 (VC2) is
calculated as shown in Equation 7-2. For a one-cell
pack, VC2 and VC2_RAW both equal zero.

EQUATION 7-2:

Cell Voltage 1 (VC1) is calculated as shown in
Equation 7-3.

EQUATION 7-3:

Current (I) is calculated as shown in Equation 7-4.

EQUATION 7-4:

Temperature (TI) is calculated as shown in Equation 7-5.

EQUATION 7-5:

FLAG_COMM_ERR

P7FG_CONTEXT OK ?

SET DEFAULT CONTEX]
SET FLAG_STATUS_WARM_START_DFLT

YES

YES

NO

Checksum on CONTEXT data

STARTUP_X

YES

A B C

VP = (VP_RAW * CF_VP)/65536

VC2 = (VC2_RAW * CF_VC2)/65536

VC1 = ((VC1_RAW + VC2_RAW) *
CF_VC1)/65536 – VC2

I = ((I_RAW – CO_I) * CF_I)/65536

TI = (839 * TI_RAW)/65536 – 280
DS21899A-page 18 Advance Information  2004 Microchip Technology Inc.

PS700Driver C
Figure 7-9 and Figure 7-10 show details of the start-up
block.

FIGURE 7-9: ADC FLOW CHART (PART 1)

PACK VOLTAGE

ADC

VPACK =
VP_RAW * CF_VP / 65536

FLAG_MODE: 1-CELL

VCELL2 =
V2_RAW * CF_V1/65536

V2_RAW = 0
VCELL2 = 0

VCELL1 =
(V1_RAW + V2_RAW) * CF_V1/65536 – VCELL2

I = (I_RAW - CO_I) * CF_I/65536

YES

NO

CELL VOLTAGE(S)

CURRENT

READ P7: OPREG_ADC_VP
(VP_RAW)

READ P7: OPREG_ADC_V2
(V2_RAW)

READ P7: OPREG_ADC_V1
(V1_RAW)

READ P7: OPREG_ADC_I
(I_RAW)

A

 2004 Microchip Technology Inc. Advance Information DS21899A-page 19

PS700Driver C
FIGURE 7-10: ADC FLOW CHART (PART 2) 7.4.3 BLOCK CAP

The calculation of remaining capacity is a multi-step
process which uses data from the following 32-bit
operational registers:

• DTC – Discharge Time Count
• CTC – Charge Time Count
• DCA – Discharge Count Accumulator

• CCA – Charge Count Accumulator

The overall CAP block flow is shown in Figure 7-11.

FIGURE 7-11: CAP FLOW CHART

TI = (TI_RAW * CF_TI)/65536 – CO_TI

ADC_X

READ P7: OPREG_ADC_TI
(TI_RAW)

A

"TIME" (500 ms tics) SINCE LAST
PROCESSING SEQUENCE
(AS MEASURED BY THE
BATTERY)

COMPUTE TIME_DELTA

COMPUTE CAP_DELTA

COMPUTE CURR_AVG

CURR_AVG <= I_NULL

CAP = CAP + CAP_DELTA

"CAPACITY" (500 AD msec)
CHANGE SINCE LAST
PROCESSING SEQUENCE
(AS MEASURED BY THE
BATTERY)

USE CAPACITY VALUES TO
COMPUTE THE "AVERAGE
CURRENT" SINCE LAST
PROCESSING SEQUENCE

IF "CURR_AVG" IS LESS THAN
THE PREDETERMINED "NULL"
CURRENT THRESHOLD, DISCARD
ANY MEASURED CAPACITY
CHANGE

YES

ADD DELTA TO RUNNING
CAPACITY ACCUMULATION

CAP

CAP_X
DS21899A-page 20 Advance Information  2004 Microchip Technology Inc.

PS700Driver C
7.4.3.1 Compute TIME_DELTA

TIME_DELTA is the accumulation of time since the last
call to the PS700Driver. The accumulated time
(TIME_ACCUM) is computed by summing the values in
DTC and CTC. The value of TIME_ACCUM is saved in
TIME_LAST at the end of each TIME_DELTA process-
ing sequence. Therefore, the delta time since the last
processing instance (TIME_DELTA) is computed by
finding the difference between the current accumulation
time and the last.

To accommodate the firmware math utilities, operands
must fit 16x16 multiply and 32/16 divides. If
TIME_DELTA exceeds 16 bits, it is scaled to fit 16 bits
with the SCALE used to store the necessary shift
count. If TIME_DELTA requires scaling, the time bits
lost due to the shifting only represent a 1/65536th of the
TIME_DELTA value. This is less than the accuracy of
the system and therefore, negligible. See Figure 7-12
for TIME_DELTA computing details.

FIGURE 7-12: TIME_DELTA FLOW CHART

READ "TIME" ACCUMULATORS

TIME_ACCUM = DTC + CTC

CHECK ACCUMULATORS TOO BIG

TIME_DELTA = TIME_ACCUM - TIME_LAST

TIME_LAST = TIME_ACCUM

TIME_DELTA' = SCALE(TIME_DELTA)
SCALE = shift count

ACCUMULATED TIME TREATED
AS "TIME-STAMP"

CHECK MAGNITUDE OF
ACCUMULATORS – SET "RESET"
FLAG IF NECESSARY

TIME SINCE LAST PROCESSING SEQUENCE
CURRENT TIME – TIME FROM LAST SEQUENCE

SAVE TIME-STAMP FOR THE NEXT
PROCESSING SEQUENCE

SCALE "TIME_DELTA" TO < 65536 (i.e. 2 BYTES)

TIME_DELTA

TIME_DELTA_X

READ P7 REGISTERS: TIME ACCUM
(DTC & CTC)
 2004 Microchip Technology Inc. Advance Information DS21899A-page 21

PS700Driver C
7.4.3.2 Compute CAP_DELTA

CAP_DELTA is the difference in capacity as measured
by the battery since the last call to the PS700Driver.
Accumulated capacity (CAP_ACCUM) is the difference
between the charge and discharge accumulators (i.e.,
CCA – DCA). The value of CAP_ACCUM is saved in
CAP_LAST at the end of each CAP_DELTA processing
sequence. Therefore, the change in capacity since the
last processing instance (CAP_DELTA) is computed by
finding the difference between the most recent
accumulation of capacity and the last.

The values of the capacity accumulators will include
the offset of the most recent measurement. To correct
the capacity accumulation measurements for offset,
the offset must be multiplied by the delta time
(TIME_DELTA). If TIME_DELTA was scaled to fit in
16 bits, the accumulated offset calculation must be cor-
rected to account for the scaling. The CAP_DELTA can
then be corrected for the offset by subtracting
OFS_ACCUM from CAP_DELTA. CAP_DELTA should
then be scaled if necessary. See Figure 7-13 for
CAP_DELTA computing details.

FIGURE 7-13: CAP_DELTA FLOW CHART

READ "CAPACITY" ACCUMULATORS

CAP_ACCUM = CCA - DCA

CHECK ACCUMULATORS TOO BIG

CAP_DELTA = CAP_ACCUM - CAP_LAST

CAP_LAST = CAP_ACCUM

"CAPACITY" IS CHARGE COUNT
MINUS DISCHARGE COUNT

CHECK MAGNITUDE OF
ACCUMULATORS – SET "RESET"
FLAG IF NECESSARY

CAP SINCE LAST PROCESSING SEQUENCE
CURRENT CAP – CAP FROM LAST SEQUENCE

SAVE "CAPACITY" VALUE FOR NEXT SEQUENCE

TOTAL ACCUMULATED OFFSET
OFS_ACCUM =

TIME_DELTA' * CO_I * 2**SCALE

CAP_DELTA' = CAP_DELTA - OFS_ACCUM

CALCULATE TOTAL "ACCUMULATED" OFFSET

ADJUST CAP_DELTA BY OFFSET

CAP_DELTA

CAP_DELTA_X

READ P7 REGISTERS: CAPACITY
ACCUM

(DTA & CTA)
DS21899A-page 22 Advance Information  2004 Microchip Technology Inc.

PS700Driver C
7.4.3.3 Compute CURR_AVG

An average current value is calculated using the calcu-
lated accumulated capacity and accumulated time.
Since capacity and time information is retrieved from
the PS700 asynchronously (serially), it is possible that
the communication can straddle the PS700 internal
500 msec processing marker. Since time data is
retrieved before capacity data, the time data may be
from the previous processing cycle. As a result, the
average current may occasionally deviate from the true
value. The magnitude of the deviation depends on the
processing interval. If the interval is 20 seconds (forty
500 msec tics), the one processing cycle deviation

results in a 2.5% jump in average current on these rare
occasions. A null current (I_NULL) threshold is applied
to the resultant average current. If the computed aver-
age current falls below I_NULL, average current is
forced to 0 and the prospective delta capacity accumu-
lation is discarded. For ensuing calculations,
CAP_DELTA is scaled into 16 bits, SCALE = shift
count. The delta capacity (CAP_DELTA) is converted
from A/D units to mA(s) by applying the current
calibration factor. The scale factor (SCALE) is applied
to correct the result.

The delta capacity (CAP_DELTA) is added to the fuel
gauge capacity value.

FIGURE 7-14: CURR_AVG FLOW CHART (PART 1)

CAP_DELTA' = CAP_DELTA << SCALE

CURR_AVG_UNITS =
CAP_DELTA'/TIME_DELTA'

CURR_AVG =
CURR_AVG_UNITS * CF_I/65536

CURR_AVG <= I_NULL

SET FLAG_INULL
CURR_AVG = 0

RST FLAG_INULL

NO

CURR_AVG

A

 2004 Microchip Technology Inc. Advance Information DS21899A-page 23

PS700Driver C
FIGURE 7-15: CURR_AVG FLOW CHART (PART 2)

FLAG_INULL

CAP_DELTA' = SCALE(CAP_DELTA)
SCALE = shift count

CAP_DELTA =
CAP_DELTA' * CF_I/65536 * 2**SCALE

CAP = CAP + CAP_DELTA

YES

IF "NULL" CURRENT
DISCARD DELTA CAPACITY

SCALE "CAP_DELTA" IF NECESARY
FOR ENSUING CALCULATIONS

CONVERT DELTA CAP UNITS
FROM 500 mSAD TO 500 mSmA
(remove scaling)

ADD DELTA TO CAPACITY ACCUMULATION

CURR_AVG_X

A

DS21899A-page 24 Advance Information  2004 Microchip Technology Inc.

PS700Driver C
7.4.4 BLOCK SELF-DISCHARGE

Self-discharge is calculated as a function of SOC,
temperature and time. At periodic intervals, calculated
self-discharge is deducted from the accumulated
capacity. The PS700 Temperature Time Count register
(TAT) is used to mark time. The Self-Discharge Factor
(SDF) is a function of SOC and temperature. The SDF
can be derived from a Look-up Table (LUT) or
calculated by Equation 7-6. The SDF units are 1/256 of
Full Charge Capacity (CAP_FULL).

EQUATION 7-6:

Using the equation to calculate SDF results in the
values in Table 7-3.

TABLE 7-3: SDF VALUES FROM EQUATION 7-6

SDF = A + ((T – 15) + (S – 70))/10 * B [Limit: 255]

where:
A = constant (= 2)
B = constant (= 2)
T = temperature [degC + 20]
S = State-Of-Charge [%]

Temperature (degC)

15 25 32 38 44 50 55 >55

SOC (%) 73 4 6 6 10 10 18 34 34

78 4 6 6 10 10 18 34 34

83 6 10 10 18 18 34 66 66

88 6 10 10 18 18 34 66 66

92 10 18 18 34 34 66 130 130

95 10 18 18 34 34 66 130 130

98 10 18 18 34 34 66 130 130

>98 18 34 34 66 66 130 255 255
 2004 Microchip Technology Inc. Advance Information DS21899A-page 25

PS700Driver C
FIGURE 7-16: SELF-DISCHARGE FLOW CHART (PART 1)

READ TIME ACCUMULATOR
(using TAT register for timing self-discharge)

TIME OVERFLOW?
SD_TIME & 0xFF000000

TIME TO COMPUTE?
SD_TIME & 0xFFFFC000

SD_TIME' = SD_TIME/256

X = SD_TIME' * 8389/65536

COMPUTE SD_COEF
SDF = A + [[T – 15] + [S – 70]]/10 * B]

COMPUTE SDCHG CAPACITY
CAP_SDCHG =

CAP_FULL * SDF /256 * X

YES

NO

SCHEDULE SELF-DISCHARGE
CALCULATIONS BY APPLYING MASK TO
TIME VALUE

SINCE "TIME" IS AVAILABLE,
COMPUTE THE PARTIAL PRODUCT INVOLVING
TIME

SELF-DISCHARGE COEFFICIENT
function of TEMPERATURE & STATE-OF-CHARGE
(formula used in lieu of LUT)

COMPUTE LOSS OF CAPACITY DUE TO
SELF-DISCHARGE

SDCHG

READ PS700 OPREG "TAT"
(SD_TIME)

CA B
DS21899A-page 26 Advance Information  2004 Microchip Technology Inc.

PS700Driver C
FIGURE 7-17: SELF-DISCHARGE FLOW CHART (PART 2)

Knowing the SDF, the capacity lost due to self-
discharge in internal units (500 mSmA) is calculated
using Equation 7-7.

EQUATION 7-7:

Typically, SDF is scaled so that SDF = 256 correlates
to 1.2% FCC per day (i.e., P = 12 above) resulting in
Equation 7-8.

EQUATION 7-8:

Because self-discharge is a small value, this calcula-
tion can be scheduled at long time intervals. TIME can
be modified to TIME', where TIME' = TIME/256 (i.e.,
units = 128 seconds). This allows a 16-bit elapsed time
accumulator to represent 128 seconds to 97 days.
Anything in excess of 97 days is declared to be an
overflow, so the self-discharge calculation is ignored
and the elapsed time accumulator is reset. Each time
self-discharge is calculated, the elapsed time
accumulator is reset. This results in the loss of some
fraction of 128 seconds in accumulated time. For this
loss to be a small percentage of the accumulated time,
SDCHG is scheduled every 64 counts of TIME' (i.e.,
64 * 128 sec = 2.3 hours). The firmware implementation
of self-discharge, using integer math and minimizing
division, results in Equation 7-9.

EQUATION 7-9:

SUBTRACT from CAP ACCUMULATION
CAP = CAP – CAP_SDCHG

YES

NO

SUBTRACT FROM CAP ACCUMULATION

CLEAR THE TIME ACCUMULATOR

SDCHG_X

CLEAR TIMER
WRITE PS700 CLEAR ACCUM "TAT"

A B C

CAP_SD_UNITS = P/1000 * SDF/256 *
TIME/172800 * FCC * 7200

where:
P = 10ths of percent of FCC corresponding
to SDF = 256
TIME = elapsed time in [500 mS]
FCC = full charge capacity [mAh]

CAP_SD_UNITS = 12/1000 * SDF/256 *
TIME/172800 * FCC * 7200

CAP_SD_UNITS = ((8289 * TIME')/65536) *
((FCC * SDF)/256)
 2004 Microchip Technology Inc. Advance Information DS21899A-page 27

PS700Driver C
7.4.5 BLOCK CAP_CALC

At this stage capacity (internal units) has been deter-
mined based on the battery capacity accumulators and
self-discharge calculations. The following derivative
capacity-based data can now be calculated:

1. Residual capacity – unusable capacity due to
temperature and discharge rate.

2. Reported capacity – capacity converted from
500 mSmA to mAh(s).

3. Relative SOC – capacity as a percentage of
FCC.

4. Cycle count.

7.4.5.1 Residual Capacity

Residual capacity (RCAP) is defined as that portion of
battery capacity that is unavailable to the system based
on discharge rate and temperature. RCAP has been
implemented at a constant discharge rate. This dis-
charge rate is the rate that the system will discharge
the battery when performing shutdown procedures.
The PS700Driver uses a Look-up table (see Table 7-4)
to define RCAP in eight temperature zones. As seen in
the EEPROM memory map (Table 6-1), RCAP_T
defines the temperature zones and RCAP defines the
residual capacity per zone.

TABLE 7-4: RCAP LUT

The values of RCAP_T are calculated using
Equation 7-10.

EQUATION 7-10:

For example, a RCAP_T value of 0 corresponds to a
temperature of -20 degrees Celsius. The residual
capacity is calculated using Equation 7-11.

EQUATION 7-11:

It is calculated only when temperature changes by
DELTA_TEMP. When capacity compensation is
enabled (see Table 6-5, Mode Map), the calculated
residual capacity (CAP_RES) is deducted from internal
capacity (CAP_UNITS) to yield reported capacity
(CAP).

7.4.6 BLOCK CHG/DCHG

The capacity-based average current value is used to
indicate whether the battery is charging, known as the
Charge Increasing (CI) state, or discharging, known as
the Charge Decreasing (CD) state.

7.4.6.1 CI

During CI, data is examined for the lithium ion/polymer
End-Of-Charge (EOC) condition. One or more cells
must have a voltage greater than the value of VEOC
and the current must be greater than zero and less than
the IEOC parameter. EOC is not valid until the
condition exists for 2 consecutive calls to PS700.

<RCAP_T[0] <RCAP_T[1] <RCAP_T[2] <RCAP_T[3] <RCAP_T[4] <RCAP_T[5] <RCAP_T[6] >RCAP_T[6]

RCAP[0] RCAP[1] RCAP[2] RCAP[3] RCAP[4] RCAP[5] RCAP[6] RCAP[7]

RCAP_T = TEMPERATURE + 20°C

CAP_RES = RCAP * CAP_FULL/256
DS21899A-page 28 Advance Information  2004 Microchip Technology Inc.

PS700Driver C
FIGURE 7-18: CI FLOW CHART (PART 1)

CHECK FOR "VEOC"
MINIMUM CELL VOLTAGE CRITERIA for EOC

VCELL1 > EE_VEOC

VCELL2 > EE_VEOC

MODE: 1-CELL

CURR_AVG == 0?

RST FLAG_IEOC

SET FLAG_VEOC

RST FLAG_VEOC

CHECK FOR "IEOC"
MAXIMUM CURRENT CRITERIA for EOC

YES

CHG

YES

NO

YES NO

A B
 2004 Microchip Technology Inc. Advance Information DS21899A-page 29

PS700Driver C
FIGURE 7-19: CI FLOW CHART (PART 2)

7.4.6.2 CD

During CD, data is examined for the End-Of-Discharge
(EOD) condition and capacity information is processed.
One or more cells must have a voltage less than the

value of VEOD for 2 consecutive calls to PS700. The
value of VEOD can be a constant over all rates and
temperatures, or dynamically derived from a look-up
table (Table 7-5).

TABLE 7-5: VEOD_LUT

CURR_AVG < EE_IEOC ?

SETCAP
CAP = CAP_FULL

FLAG_VEOC & FLAG_IEOC

FLAG_VEOC_1
SET FLAG_EOC

SET FLAG_EOC_LATCH
SET FLAG_FCHG

RST FLAG_EOC
RST FLAG_EOC_1
RST FLAG_FCHG

SET FLAG_EOC_1

SET FLAG_IEOC

NO

NO

NO

REQUIRE 2 CONSECUTIVE PROCESSING SEQ(S)
WITH VALID EOC CRITERIA BEFORE SETTING "EOC"

CHG_X

A B

<C[0] <C[1] <C[2] >C[2]

<T[0] VEOD[0,0] VEOD[1,0] VEOD[2,0] VEOD[3,0]

<T[1] VEOD[0,1] VEOD[1,1] VEOD[2,1] VEOD[3,1]

<T[2] VEOD[0,2] VEOD[1,2] VEOD[2,2] VEOD[3,2]

<T[3] VEOD[0,3] VEOD[1,3] VEOD[2,3] VEOD[3,3]

<T[4] VEOD[0,4] VEOD[1,4] VEOD[2,4] VEOD[3,4]

<T[5] VEOD[0,5] VEOD[1,5] VEOD[2,5] VEOD[3,5]

<T[6] VEOD[0,6] VEOD[1,6] VEOD[2,6] VEOD[3,6]

>T[6] VEOD[0,7] VEOD[1,7] VEOD[2,7] VEOD[3,7]
DS21899A-page 30 Advance Information  2004 Microchip Technology Inc.

PS700Driver C
FIGURE 7-20: VEOD FLOW CHART

The VEOD LUT is a 2-D matrix of voltages organized in
4 discharge rate zones (columns) and 8 temperature
zones (rows). The VEOD_LUT values are calculated
using the following equations:

EQUATION 7-12:

EQUATION 7-13:

EQUATION 7-14:

FLAG_MODE_VEOD_K

VEOD_LUT

VEOD =
VEOD_LUT[CURR,TEMP]

FLAG_MODE_VEOD_AGE

VEOD_AGE

VEOD = VEOD – CYCLES * 32/256

YES

NO

VEOD

VEOD_X

APPLY AGING TO VEOD VALUE

VEOD: CONSTANT or LUT

FLAG_MODE_VEOD_K

READ P7 EEPROM
VEOD = EE_VEOD

NO

C = CURR_AVG/16

T = TEMPERATURE + 20

VEOD = VEOD[C,T] * 4 + 2600
 2004 Microchip Technology Inc. Advance Information DS21899A-page 31

PS700Driver C
FIGURE 7-21: VEOD_LUT FLOW CHART (PART 1)

FLAG_TCOMP

FLAG_TCOMP_NEG

FLAG_VEOD_LUT_MAX

FLAG_VEOD_LUT_MIN

READ EEPROM: LUT TEMPERATURE AXIS
from BATTERY

BUFFER = VEOD_LUT_AXIS_TEMP[0:6]

EE_OFFSET = INDEX * #COLUMNS

NO

NO

VECTOR_INDEX
(DETERMINE INDEX on "TEMPERATURE" AXIS)

KEY = TEMPERATURE
INDEX = INDX[VEOD_LUT_AXIS_TEMP, KEY]

TEMPERATURE CHANGE?

AVOID UNNECESSARY READ(S)
IF PREVIOUS TEMPERATURE
WAS OFF EITHER END OF THE
AXIS AND THE CHANGE WAS IN
THE SAME DIRECTION

READ LUT "ROW" ASSOCIATED
WITH THE NEW TEMPERATURE

ROW IS KEPT STATIC IN RAM

VEOD_LUT

A B
DS21899A-page 32 Advance Information  2004 Microchip Technology Inc.

PS700Driver C
FIGURE 7-22: VEOD_LUT FLOW CHART (PART 2)

The EOD threshold (VEOD) can be optionally modified
by an aging factor based on cycle count.

EQUATION 7-15:

To minimize unnecessary or redundant communication
with the battery, a VEOD_LUT row is kept in system
RAM and only retrieved when the temperature changes
by a predetermined value DELTA_TEMP. While tem-
perature remains constant, VEOD can be determined
from existing data in system RAM based on discharge
rate. A flag is also set to indicate the direction of tem-
perature change, more negative or more positive. This
further reduces communication with the PS700 when
the new temperature is in the same zone. When the
new temperature is in a new zone, the applicable row
is retrieved from the battery and stored in RAM. During
each processing loop, the VEOD can be determined,
using the discharge rate from the LUT row in system
RAM. The details of the data retrieval are shown in
Figure 7-23.

READ EEPROM: LUT "ROW"
from BATTERY

VEOD_V[0:ROW_LEN – 1] =
VEOD_LUT[EE_OFFSET:EE_OFFSET + ROW_LEN – 1]

fetch VEOD from LUT "ROW"

VEOD_CODED = VEOD_V[INDEX]

decode VEOD_CODED

VEOD = VEOD_CODED * 4 + 2600

NO

VECTOR_INDEX
(DETERMINE INDEX on "CURRENT" AXIS)

KEY = CURR_AVG/16
INDEX = INDX[VEOD_C, KEY]

FETCH from LUT "COLUMN"
ASSOCIATED WITH THE
CURRENT

VEOD_LUT_X

A B

VEOD' = VEOD – CYCLES * AGE_FACTOR/256

where:
VEOD' = new VEOD
VEOD = old VEOD
CYCLES = cycle count
AGE_FACTOR = predetermined effect of cycles
on EOD voltage (hard coded = 32)
 2004 Microchip Technology Inc. Advance Information DS21899A-page 33

PS700Driver C
FIGURE 7-23: TEMPERATURE CHANGE FLOW CHART

TEMP_LAST
is the temperature from the last FG process

X = TEMP – TEMP_LAST

X == 0?

X < 0?

SET FLAG_TCOMP_NEG

SET FLAG_TCOMP

X = -X

X >= TEMP_DELTA

TEMP_LAST = TEMP

YES

NO

NO

FLAG_TCOMP_NEG
indicates the direction of the difference

(used to prevent unnecessary reaction to
temperature change)

FLAG_TCOMP
indicates a temperature change >=

TEMP_DELTA (hard coded = 1)

TCOMP

TCOMP_X
DS21899A-page 34 Advance Information  2004 Microchip Technology Inc.

PS700Driver C
At EOD, the PPS700Driver can optionally learn a new
full charge capacity (FCC or CAP_FULL). The fuel
gauge will learn if the battery maintained a CD state
since detecting EOC. Any intervening charge since
EOC will prevent FCC learning. The measured capac-
ity between EOC and EOD is used to determine a new
CAP_FULL, as shown in Equation 7-16.

EQUATION 7-16:

FIGURE 7-24: EOD_CAP FLOW CHART (PART 1)

CAP_FULL' = CAP_FULL – CAP + CAP_RES + CAP_EOD

where:
CAP_FULL' = new full charge capacity
CAP_FULL = old full charge capacity
CAP = capacity at EOD
CAP_RES = residual capacity
CAP_EOD = arbitrary capacity around which the
VEOD table was built

FLAG_EOD_ARMED

YES

EOD "TRIGGER" ARMED?

EOD_CAP

FLAG_EOD

CAP < CAP_EOD

CAP = CAP_EOD

FLAG_EOD

YES

NO

NO

SET "REPORTED" CAPACITY

IF NOT EOD
DO NOT LET CAPACITY BELOW
"CAP_EOD"

A B
 2004 Microchip Technology Inc. Advance Information DS21899A-page 35

PS700Driver C
FIGURE 7-25: EOD_CAP FLOW CHART (PART 2)

FLAG_CAP_COMPENSATE

CAP = CAP + CAP_RES

CAP_SET

RST FLAG_EOD_ARMED

EOD_CAP_X

NO

SETS INTERNAL CAPACITY

IF COMPENSATING CAPACITY,
INCLUDE RESIDUAL CAPACITY
WHEN SETTING INTERNAL CAP

A B
DS21899A-page 36 Advance Information  2004 Microchip Technology Inc.

PS700Driver C
FIGURE 7-26: CD FLOW CHART (PART 1)

VEOD
DETERMINE VEOD VALUE

CHECK FOR ANY VCELL < VEOD

RST FLAG_EOD

VCELL1 < VEOD MODE: 1-CELL

VCELL2 < VEOD

FLAG_VEOD_1

SET FLAG_EOD
SET FLAG_FDCHG

VALIDATE "EOD"
REQUIRES 2 CONSECUTIVE
PROCESSING SEQUENCES

EOD DETECT – SET FLAGS

PRE-CLEAR "EOD" DETECT FLAG

DCHG

NO

NO

YES

YES

SET FLAG_EOD_1

NO

CA B
 2004 Microchip Technology Inc. Advance Information DS21899A-page 37

PS700Driver C
FIGURE 7-27: CD FLOW CHART (PART 2)

FLAG_EOC_LATCH

LEARN new CAP_FULL

CAP_FULL' =
CAP_FULL – CAP + CAP_EOD +

CAP_RES

SET FLAG_BACKUP
RST FLAG_EOD_1

NO

FLAG INDICATES A
CONTINUOUS DISCHARGE
SINCE "EOC"

CALCULATE "CAP_FULL"
NEW FULL CHARGE CAPACITY

SET FLAG TO WRITE
"CAP_FULL" TO BATTERY
EEPROM

DCHG_X

EOD_CAP
PROCESS REPORTED CAP

CA B
DS21899A-page 38 Advance Information  2004 Microchip Technology Inc.

PS700Driver C
7.4.7 BLOCK END

The post-process section performs functions to finalize
processing and prepare for the next call.

1. Clear Accumulators – if capacity accumulators
(time or capacity) were deemed too large (at risk
of overflow), they are reset by writing to the
Accumulator Clear register.

2. Data Backup – if data to be archived was modi-
fied during processing (e.g., CYCLE_COUNT,
CAP_FULL), the new/modified value is written
to PS700 EEPROM.

3. Build Status – use internal flags to build the
driver status word (reference section below).

4. Device Sync – Write fuel gauge context to
PS700 RAM.

FIGURE 7-28: END FLOW CHART

CLEAR CAP ACCUMULATORS
WRITE P7 CLR ACCUM

CCA,CTC,DCA,DTC

END

FLAG_ACC_CLEAR

FLAG_FLAG_BACKUP

WRITE P7 EEPROM
BACKUP DATA

CAP_FULL, CYCLES

FLAG_COMM_ERR

WRITE P7 RAM
FUEL GAUGE CONTEXT

END_X

YES

YES

NO

CAP ACCUMULATORS DEEMED TOO LARGE
DURING CAP PROCESSING –
WRITE CONTROL REGISTER TO CLEAR ALL 4

"BACKUP" DATA WAS MODIFIED
ARCHIVE TO P7 EEPROM

WRITE FUEL GAUGE CONTEXT TO P7 RAM

COMPUTE CAP_REL
CAP_REL =

CAP/CAP_FULL * 100
 2004 Microchip Technology Inc. Advance Information DS21899A-page 39

PS700Driver C
7.4.8 BLOCK STATUS

After the end of processing, status information is
cleared and a new battery status is obtained, as shown
in Figure 7-29 and Figure 7-30. The STATUS bits
reside in system RAM.

FIGURE 7-29: STATUS FLOW CHART (PART 1)

STATUS

STATUS & STATUS_MASK_CLR

FLAG_DCHG

SET FLAG_STATUS_DCHG

FLAG_FCHG

SET FLAG_STATUS_FCHG

CAP_REL < 95%

RST FLAG_STATUS_FCHG

FLAG_FDCHG

SET FLAG_STATUS_FDCHG

CAP_REL > 5%

RST FLAG_STATUS_FDCHG

STAT

NO

NO

NO

NO

NO

CLEAR STATUS WORD,
THE MASK SAVES PERSISTENT BITS

DISCHARGING

FULLY CHARGED
(PERSISTENT BIT)

FULLY CHARGED RESET POINT

FULLY DISCHARGED
(PERSISTENT BIT)

FULLY DISCHARGED RESET POINT
DS21899A-page 40 Advance Information  2004 Microchip Technology Inc.

PS700Driver C
FIGURE 7-30: STATUS FLOW CHART (PART 2)

STATUS_X

FLAG_EOC

SET FLAG_STATUS_EOC

FLAG_EOD

SET FLAG_STATUS_EOD

STAT

FLAG_VEOC

FLAG_EOD_1

SET FLAG_STATUS_TURBO

NO

NO

NO

NO

END-OF-CHARGE

END-OF-DISCHARGE

END-OF-CHARGE VOLTAGE CRITERIA

END-OF-DISCHARGE – 1ST DETECT
 2004 Microchip Technology Inc. Advance Information DS21899A-page 41

PS700Driver C
7.5 Processing Resources

7.5.1 SYSTEM RAM

Table 7-6 shows the processing data stored in system
RAM to avoid repeated communication with the PS700
and the corresponding lengths.

TABLE 7-6: SYSTEM RAM PROCESSING RESOURCES

7.5.2 PROGRAM MEMORY

Table 7-7 presents the major fuel gauge functional sec-
tions with their corresponding lengths in memory. Func-
tions not appearing in the table are the command
decode/jump table and the SMBus communication API.
The indented names indicate a subfunction of the
name above.

TABLE 7-7: PROGRAM MEMORY PROCESSING RESOURCES

Length
Name Description

HEX DEC

17 DATA – REPORTED Processed Fuel Gauge Data

19 DATA – INTERNAL Internal Fuel Gauge Data Register

29 STATIC PARAMETERS Calibration Factors, Parameters, Configuration

8 VEOD LUT VEOD Look-up Table – column axis & 1 row

14 SCRATCHPAD Math Accumulators, Command Buffer, etc.

8 MISC CONTROL REGISTERS Misc. Control Registers, Flags, etc.

95 TOTAL

 Length
Name Description

HEX DEC

58 88 START-UP Battery ID, Load Processing Context

6A 106 ADC Process ADC Results

91 145 CAP Process Capacity Accumulators

63 99 SDCHG (option) Self-Discharge

56 86 CAP_CALC Capacity-based Data (relative cap, etc.)

2E 46 RCAP (option) Residual Capacity

C8 200 STATE Charge/Discharge Processing

2C 44 STATE: CHG Charge Processing – EOC Detect

93 147 STATE: DCHG Discharge Processing – EOD Detect

58 88 STATE: DCHG: VEOD (option) VEOD Look-up Table

11 17 STATE: DCHG: VEODAGE (option) VEOD Aging

3E 62 END End-Of-Process Housekeeping (status, etc.)

10B 267 UTIL: MATH Math Utilities and Data Manipulation

6E 110 UTIL: FG Miscellaneous Fuel Gauge Utilities

48B 1163 TOTAL
DS21899A-page 42 Advance Information  2004 Microchip Technology Inc.

PS700Driver C
7.6 Communication

Communication with the PS700 is system dependent
and not considered part of the PS700Driver. As
implemented on the PowerInfo 2, PS700Driver takes
advantage of the available SMBus controller.
Generally, the program flow calls for:

1. Loading registers with transaction parameters
(i.e., address, byte count, etc.).

2. Building the “script” required by the PowerInfo 2
SMBus controller.

3. Idling to allow the SMBus controller to execute
the script.

The PS700Driver follows Figure 7-31 to read from the
PS700 and Figure 7-32 to write to it.

FIGURE 7-31: PS700 READ

P7_READ

LOAD REGISTERS

R_P7_DEVADR_H = device address (MSB)
R_P7_ADR = local address
R_TEMPC_1 = 0xC2 (SMBus address)
R_TEMPC_2 = device address (LSB)
R_TEMPC_4 = byte count

READ_PREP

build PowerInfo 2 SMBus script

SERVICE LOOP

Wait SMBus transaction complete

P7_READ_X

SMBus DATA FETCH

Retrieve data from PowerInfo 2 SMBus
buffer

LOAD CONTROL REGISTER(S)
w/SMBus transaction parameters

BUILD PowerInfo™ 2 SMBus TRANSACTION SCRIPT

IDLE LOOP
TO ALLOW PowerInfo 2 SMBus
CONTROLLER TO EXECUTE THE
TRANSACTION SCRIPT

RETRIEVE DATA
from PowerInfo 2 SMBus transaction script,
load system RAM designated by R_P7_ADR
 2004 Microchip Technology Inc. Advance Information DS21899A-page 43

PS700Driver C
FIGURE 7-32: PS700 WRITE

P7_WRITE

LOAD REGISTERS

R_P7_DEVADR_H = device address (MSB)
R_P7_ADR = local address
R_TEMPC_1 = 0xC2 (SMBus address)
R_TEMPC_2 = device address (LSB)
R_TEMPC_4 = byte count

WRITE_PREP

build PowerInfo 2 SMBus script

SERVICE LOOP

Wait SMBus transaction complete

P7_WRITE_X

LOAD CONTROL REGISTER(S)
w/ SMBus transaction parameters

BUILD PowerInfo™ 2 SMBus TRANSACTION SCRIPT

IDLE LOOP
TO ALLOW PowerInfo 2 SMBus
CONTROLLER TO EXECUTE THE
TRANSACTION SCRIPT
DS21899A-page 44 Advance Information  2004 Microchip Technology Inc.

PS700Driver C
8.0 PS700 CONFIGURATION

The PS700Driver assumes that the Accumulator
Control register (Accumctrl) is configured as shown in
Table 8-1 and the A/D Control registers (ADcx) are
configured as shown in Table 8-2.

TABLE 8-1: ACCUMULATOR CONTROL REGISTER

TABLE 8-2: A/D CONTROL REGISTERS

Name Enable Description

0 (RES) 0 Reserved

1 (RES) 0 Reserved

2 (RES) 0 Reserved

3 TSEL 1/0 Temperature Select

4 ACCV 0 Accumulate Voltage

5 ACCT 1 Temperature (temperature time used for self discharge)

6 ACCL 1 Current Accumulation

7 ACCUM 1 Master Enable

Name Enable Description

0 Ires 1 Current

1 ITres 1 Internal Temperature

2 ETres 0 External Temperature

3 VPres 1 Pack Voltage

4 VC1ENTres 1 VCELL1 Voltage

5 VC2res 1 VCELL2 Voltage

6 OFFSres 0 Offset

7 AUXres 0 Aux
 2004 Microchip Technology Inc. Advance Information DS21899A-page 45

PS700Driver C
NOTES:
DS21899A-page 46 Advance Information  2004 Microchip Technology Inc.

 2004 Microchip Technology Inc. Advance Information DS21899A-page 47

PS700DRIVER C

Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical com-
ponents in life support systems is not authorized except with
express written approval by Microchip. No licenses are con-
veyed, implicitly or otherwise, under any intellectual property
rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
PIC, PICmicro, PowerSmart and SmartShunt are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SmartSensor is a registered trademark of Microchip
Technology Incorporated in the U.S.A.

PowerCal, PowerInfo, PowerMate, PowerTool and SmartTel
are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

All other trademarks mentioned herein are property of their
respective companies.

© 2004, Microchip Technology Incorporated. Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

DS21899A-page 48 Advance Information  2004 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: www.microchip.com

Atlanta
3780 Mansell Road, Suite 130
Alpharetta, GA 30022
Tel: 770-640-0034
Fax: 770-640-0307

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848
Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
16200 Addison Road, Suite 255
Addison Plaza
Addison, TX 75001
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
2767 S. Albright Road
Kokomo, IN 46902
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
25950 Acero St., Suite 200
Mission Viejo, CA 92691
Tel: 949-462-9523
Fax: 949-462-9608

San Jose
1300 Terra Bella Avenue
Mountain View, CA 94043
Tel: 650-215-1444
Fax: 650-961-0286

Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Unit 32 41 Rawson Street
Epping 2121, NSW
Sydney, Australia
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Unit 706B
Wan Tai Bei Hai Bldg.
No. 6 Chaoyangmen Bei Str.
Beijing, 100027, China
Tel: 86-10-85282100
Fax: 86-10-85282104
China - Chengdu
Rm. 2401-2402, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200
Fax: 86-28-86766599
China - Fuzhou
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506
Fax: 86-591-7503521
China - Hong Kong SAR
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Shanghai
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700
Fax: 86-21-6275-5060
China - Shenzhen
Rm. 1812, 18/F, Building A, United Plaza
No. 5022 Binhe Road, Futian District
Shenzhen 518033, China
Tel: 86-755-82901380
Fax: 86-755-8295-1393
China - Shunde
Room 401, Hongjian Building, No. 2
Fengxiangnan Road, Ronggui Town, Shunde
District, Foshan City, Guangdong 528303, China
Tel: 86-757-28395507 Fax: 86-757-28395571
China - Qingdao
Rm. B505A, Fullhope Plaza,
No. 12 Hong Kong Central Rd.
Qingdao 266071, China
Tel: 86-532-5027355 Fax: 86-532-5027205
India
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-22290061 Fax: 91-80-22290062
Japan
Yusen Shin Yokohama Building 10F
3-17-2, Shin Yokohama, Kohoku-ku,
Yokohama, Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122
Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5932 or
82-2-558-5934

Singapore
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850
Taiwan
Kaohsiung Branch
30F - 1 No. 8
Min Chuan 2nd Road
Kaohsiung 806, Taiwan
Tel: 886-7-536-4816
Fax: 886-7-536-4817
Taiwan
Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139
Taiwan
Taiwan Branch
13F-3, No. 295, Sec. 2, Kung Fu Road
Hsinchu City 300, Taiwan
Tel: 886-3-572-9526
Fax: 886-3-572-6459

EUROPE
Austria
Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45-4420-9895 Fax: 45-4420-9910
France
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany
Steinheilstrasse 10
D-85737 Ismaning, Germany
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy
Via Salvatore Quasimodo, 12
20025 Legnano (MI)
Milan, Italy
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands
Waegenburghtplein 4
NL-5152 JR, Drunen, Netherlands
Tel: 31-416-690399
Fax: 31-416-690340
United Kingdom
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44-118-921-5869
Fax: 44-118-921-5820

07/12/04

WORLDWIDE SALES AND SERVICE

	1.0 Product Overview
	2.0 PS700Driver C Architecture
	FIGURE 2-1: PS700Driver C Architecture Example
	2.1 Code Organization
	2.1.1 Files
	2.1.2 Data Types
	EXAMPLE 2-1: File: p7fgc_typedef.h

	2.1.3 Functions Provided
	TABLE 2-1: PS700Driver C Functions

	2.1.4 Additional Functions
	TABLE 2-2: SMBus Communication Functions

	2.2 Math
	2.3 Data
	2.4 Memory Map

	3.0 Exceptions
	3.1 PS700Driver C Differences
	3.1.1 Data Transfer to/from PS700
	TABLE 3-1: Data Transfer Modules

	3.2 PS700Driver C Continuance of PS700Driver Compromises
	3.2.1 Partial Storage of VEOD LUT
	3.2.2 Operational Flags
	3.2.3 Self-Discharge
	3.2.4 Non-Interpolated Residual Capacity
	3.2.5 Math

	4.0 Implementation
	4.1 Application Requirements
	4.2 Execution Model
	4.3 SMBus Communication

	5.0 Host
	5.1 PS700Driver Interface
	5.1.1 Execution
	FIGURE 5-1: Host Execution Flow Chart

	5.1.2 SMBus Communication
	5.1.3 Data

	5.2 Resources

	6.0 Driver
	6.1 Data
	FIGURE 6-1: Powerinfo™ 2 Architecture – Data Storage
	6.1.1 System RAM
	6.1.2 PS700 Operation Registers
	6.1.3 PS700 EEPROM
	TABLE 6-1: PS700 EEPROM Map

	6.1.4 PS700 RAM
	TABLE 6-2: PS700 RAM Map

	6.1.5 System RAM
	TABLE 6-3: System RAM Map�
	TABLE 6-4: Status Map
	TABLE 6-5: Mode Map

	7.0 Processing
	FIGURE 7-1: Main Processing Flow Chart
	TABLE 7-1: Processing Commands
	7.1 Subcommand RESET
	FIGURE 7-2: Reset Flow Chart

	7.2 Subcommand INIT
	FIGURE 7-3: INIT Flow Chart

	7.3 Subcommand CAPSET
	FIGURE 7-4: CAPSET Flow Chart

	7.4 Subcommand PROC
	FIGURE 7-5: PROC Flow Chart (Part 1)
	FIGURE 7-6: PROC Flow Chart (Part 2)
	TABLE 7-2: Fuel Gauging (PROC) Blocks
	7.4.1 Block Start-up
	FIGURE 7-7: Start-up Flow Chart (Part 1)
	FIGURE 7-8: Start-up Flow Chart (Part 2)

	7.4.2 Block ADC
	EQUATION 7-1:
	EQUATION 7-2:
	EQUATION 7-3:
	EQUATION 7-4:
	EQUATION 7-5:
	FIGURE 7-9: ADC Flow Chart (Part 1)
	FIGURE 7-10: ADC Flow Chart (Part 2)

	7.4.3 Block CAP
	FIGURE 7-11: CAP Flow Chart
	FIGURE 7-12: TIME_DELTA Flow Chart
	FIGURE 7-13: CAP_DELTA Flow Chart
	FIGURE 7-14: CURR_AVG Flow Chart (Part 1)
	FIGURE 7-15: CURR_AVG Flow Chart (Part 2)

	7.4.4 Block Self-Discharge
	EQUATION 7-6:
	TABLE 7-3: SDF Values from Equation�7-6
	FIGURE 7-16: Self-Discharge Flow Chart (Part 1)
	FIGURE 7-17: Self-Discharge Flow Chart (Part 2)
	EQUATION 7-7:
	EQUATION 7-8:
	EQUATION 7-9:

	7.4.5 Block CAP_CALC
	TABLE 7-4: RCAP LUT
	EQUATION 7-10:
	EQUATION 7-11:

	7.4.6 Block CHG/DCHG
	FIGURE 7-18: CI Flow Chart (Part 1)
	FIGURE 7-19: CI Flow Chart (Part 2)
	TABLE 7-5: VEOD_LUT
	FIGURE 7-20: VEOD Flow Chart
	EQUATION 7-12:
	EQUATION 7-13:
	EQUATION 7-14:
	FIGURE 7-21: VEOD_LUT Flow Chart (Part 1)
	FIGURE 7-22: VEOD_LUT Flow Chart (Part 2)
	EQUATION 7-15:
	FIGURE 7-23: Temperature Change Flow Chart
	EQUATION 7-16:
	FIGURE 7-24: EOD_CAP Flow Chart (Part 1)
	FIGURE 7-25: EOD_CAP Flow Chart (Part 2)
	FIGURE 7-26: CD Flow Chart (Part 1)
	FIGURE 7-27: CD Flow Chart (Part 2)

	7.4.7 Block End
	FIGURE 7-28: End Flow Chart

	7.4.8 Block Status
	FIGURE 7-29: Status Flow Chart (Part 1)
	FIGURE 7-30: Status Flow Chart (Part 2)

	7.5 Processing Resources
	7.5.1 System RAM
	TABLE 7-6: System RAM Processing Resources

	7.5.2 Program Memory
	TABLE 7-7: Program Memory Processing Resources

	7.6 Communication
	FIGURE 7-31: PS700 Read
	FIGURE 7-32: PS700 Write

	8.0 PS700 Configuration
	TABLE 8-1: Accumulator Control Register
	TABLE 8-2: A/D Control Registers

	Worldwide Sales and Service

