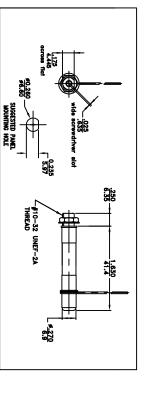
SPRAGUE GOODMAN

CERAMIC HIGH VOLTAGE NONMAGNETIC TRIMMER CAPACITORS

SGNMNC1 Series

(0.27 in /6.9 mm diameter by 1.63 in /41.4 mm long)

Model Number	Capacitance	itance	-	Rated DC	•	"ENL"version shown
	Min Max	Max	(ar zo mnz)	working voltage (kV)	Voltage (kV)	
SGNMNC1054	0.5	5.0	2000	4	8	
SGNMNC1056	0.5	5.0	2000	6	12	
SGNMNC1059	0.5	5.0	2000	8.75	17.5	10
SGNMNC1103	1.0	10.0	1700	3	6	
SGNMNC1106	1.0	10.0	1700	6	12	NAME
SGNMNC1108	1.0	10.0	1700	7.5	15	80
SGNMNC1152	1.0	15.0	1500	2	4	
SGNMNC1156	1.5	15.0	1500	9	12	
SGNMNC1206	2.0	20.0	1500	6	12	8.30


- Options:

 1. For an extended adjusting shaft, add suffix "E" to the model number.

 2. For a model that can operate and be tuned at temperatures as low as 4K, add suffix "K" to the model number. Note that the cryogenic version is not sealed.

 3. For a version that does not include a wire lead attached to the stator terminal, add suffix "NL" to the model number.

 4. Other stator terminations are available. Contact the factory.

All dimensions are in/mm. Unless otherwise specified, tolerance is $\pm 0.002/0.05$