
Advance Information

Data sheet acquired from Harris Semiconductor SCHS286A – October 2003

Octal-Bus Transceiver, 3-State, Non-Inverting

Type Features:

- Buffered inputs
- Typical propagation delay: 4.5 ns @ V_{CC} = 5 V, T_A = 25° C, C_L = 50 pF

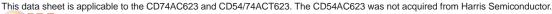
The RCA CD54/74AC623 and CD54/74ACT623 octal-bus transceivers use the RCA ADVANCED CMOS technology. They are non-inverting, 3-state, bidirectional transceiver-buffers that allow for two-way transmission from "A" bus to "B" bus or "B" bus to "A" bus, depending on the logic levels of the Output Enable (\overline{OE}_{BA} , \overline{OE}_{BA}) inputs.

The dual Output Enable provision gives these devices the capability to store data by simultaneously enabling OEAB and OEBA. Each output reinforces its input under these conditions, and when all other data sources to the bus lines are at high-impedance, both sets of bus lines will remain in their last states.

The CD74AC623 is supplied in 20-lead dual-in-line plastic packages (E suffix) and in 20-lead small-outline packages (M, M96, and NSR suffixes). The CD74ACT623 is supplied in 20-lead small-outline packages (M96 suffix). Both package types are operable over the following temperature ranges: Commercial (0 to 70°C); Industrial (-40 to +85°C); and Extended Industrial/Military (-55 to +125°C).

The CD54AC623 and CD54ACT623, available in chip form (H suffix), are operable over the -55 to +125°C temperature range.

Family Features:


- Exceeds 2-kV ESD Protection MIL-STD-883, Method 3015
- SCR-Latchup-resistant CMOS process and circuit design
- Speed of bipolar FAST*/AS/S with significantly reduced power consumption
- Balanced propagation delays
- AC types feature 1.5-V to 5.5-V operation and balanced noise immunity at 30% of the supply
- ± 24-mA output drive current
 - Fanout to 15 FAST* ICs
 - Drives 50-ohm transmission lines

TRUTH TABLE

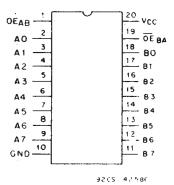
OUTPUT EN	ABLE INPUTS	0050471041				
OE _{BA}	OE _{AB}	OPERATION				
L	L	B DATA TO A BUS				
Н	Н	A DATA TO B BUS				
Н	L	ISOLATION				
L	Н	B DATA TO A BUS, A DATA TO B BUS				

H = High level, L = Low level

Note: To prevent excess currents in the High-Z (isolation) modes, all I/O terminals should be terminated with 10 k Ω to 1 M Ω resistors.

This data sheet is a PDF PDF pdf.dzsc.com

^{*}FAST is a Registered Trademark of Fairchild Semiconductor Corp.


MAXIMUM RATINGS, Absolute-Maximum Values:
DC SUPPLY-VOLTAGE (V _∞)0.5 to 6 V
DC INPUT DIODE CURRENT, I_{ik} (for $V_i < -0.5 \text{ V}$ or $V_i > V_{CC} + 0.5 \text{ V}$)
DC OUTPUT DIODE CURRENT, l_{OK} (for $V_0 < -0.5$ V or $V_0 > V_{CC} + 0.5$ V)
DC OUTPUT SOURCE OR SINK CURRENT per Output Pin, Io (for $V_0 > -0.5 \text{ V}$ or $V_0 < V_{CC} + 0.5 \text{ V}$)
DC V _{CC} or GROUND CURRENT (I _{CC} or I _{GNO})
POWER DISSIPATION PER PACKAGE (PD):
For T _A = -55 to +100°C (PACKAGE TYPE E)
For T _A = +100 to +125°C (PACKAGE TYPE E)
For $T_A = -55$ to $+70^{\circ}$ C (PACKAGE TYPE M)
For T _A = +70 to +125°C (PACKAGE TYPE M)
OPERATING-TEMPERATURE RANGE (T _a)55 to +125°C
STORAGE TEMPERATURE (Tstg)65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s maximum
Unit inserted into PC board min. thickness 1/16 in. (1.59 mm) with solder contacting lead tips only +300°C
*For up to 4 outputs per device; add \pm 25 mA for each additional output.

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, normal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIA	LIMITS				
	MIN.	MAX.	UNITS			
Supply-Voltage Range, V_{cc}^* : (For $T_A = Full Package-Temperature Range)$						
AC Types ACT Types	1.5 4.5	5.5 5.5	V			
DC Input or Output Voltage, V _I , V _O	0	Vcc	V			
Operating Temperature, T _A	-55	+125	°C			
Input Rise and Fall Slew Rate, dt/dv at 1.5 V to 3 V (AC Types) at 3.6 V to 5.5 V (AC Types) at 4.5 V to 5.5 V (ACT Types)	0 0	50 20 10	ns/V ns/V			

^{*}Unless otherwise specified, all voltages are referenced to ground.

TERMINAL ASSIGNMENT

STATIC ELECTRICAL CHARACTERISTICS: AC Series

					AMBIENT TEMPERATURE (TA) - °C						
CHARACTERISTICS		TEST CO	NDITIONS	V _{cc} (V)	+2	25	-40 to	+85	-55 to	+125	UNITS
		V, (V)	l _o (mA)	(V)	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
High-Level Input				1.5	1.2		1.2	·	1.2		
Voltage	VIH			3	2.1		2.1		2.1		V
•*				5.5	3.85		3.85	_	3.85	<u> </u>	
Low-Level Input				1.5	_	0.3	_	0.3	_	0.3	
Voltage	VIL			.3		0.9		0.9		0.9	V
				5.5	77	1.65	,	1.65	. —	1.65	
High-Level Output			-0.05	1.5	1.4	_	1.4		1.4		
Voltage	V _{OH}	VIH	-0.05	3	2.9	_	2.9		2.9		
		or	-0.05	4.5	4.4		4.4		4.4		
		VIL	-4	3	2.58	<u> </u>	2.48		2.4		V
			-24	4.5	3.94	_	3.8	i — ;	3.7]
		1	-75	5.5	_	_	3.85			<u> </u>	
		#, * {	-50	5.5		l –	T –		3.85		l
Low-Level Output	***		0.05	1.5	_	0.1	_	0.1		0.1	
Voltage	Vol	VIH	0.05	3	_	0.1	<u> </u>	0.1	_	0.1	}
		or	0.05	4.5		0.1	_	0:1	_	0.1]
		V _{IL}	12	3	_	0.36		0.44	_	0.5	V
			24	4.5		0.36	_	0.44		0.5] -
		1	75	5.5	_	_	_	1.65	_	T -]
		#, * {	50	5.5		<u> </u>	<u> </u>	_	— ·	1.65]
Input Leakage Current	I ₁	V _∞ or GND		5.5	·	±0.1	_	±1		±1	μΑ
3-State Leakage Current	loz	V _{IH} or V _{IL} V _O = V _∞ or GND		5.5		±0.5		±5	_	±10	μΑ
Quiescent Supply Current, MSI	lcc	V _{CC} or GND	0	5.5		8	-	80		160	μΑ

[#]Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize

power dissipation.

* Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C.

STATIC ELECTRICAL CHARACTERISTICS: ACT Series

		1.0			AMBIENT TEMPERATURE (TA) - °C						
CHARACTERISTICS		1	TEST CONDITIONS		+	25	-40 to +85		-55 to +125		UNITS
		V, (V)	l _o (mA)	(V)	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
High-Level Input Voltage	V _{IH}			4.5 to 5.5	2	_	2	_	2	-	·V
Low-Level Input Voltage	VIL	-		4.5 to 5.5	_	0.8	-	0.8	_	8.0	V,
High-Level Output		V _{IH}	-0.05	4.5	4.4	_	4.4		4.4		
Voltage	· V _{OH}	or	-24	4.5	3.94	·—	3.8	÷	3.7	-] _v
		V _{IL} 1	-75	5.5		_	3.85	_	_	_	1 Y
		#, * {	-50	5.5		_	_		3.85	_	1
Low-Level Output		V _{IH} or V _{IL}	0.05	4.5	_	0.1	<u> </u>	0.1	_	0.1	
Voltage Vol.	Vol		24	4.5		0.36		0.44	_	0.5	1 v
			75	5.5	_	_	_	1.65	_	_	1
		#, * {	50	5.5		_	_			1.65	1
Input Leakage Current	l,	V∞ or GND		5.5		±0.1		±1	_	±1	μА
3-State Leakage Current	loz	V _{IH} or V _{IL} Vo = V∞ or GND		5.5	_	±0.5	-	±5	· . 	±10	μΑ
Quiescent Supply Current, MSI	loc	V _∞ or GND	o	5.5	_	8		80	_	160	μΑ
Additional Quiescent Son Current per Input Pin TTL Inputs High 1 Unit Load		V _∞ -2.1		4.5 to 5.5		2.4		2.8	—	3	mA

[#]Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation.
*Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C.

ACT INPUT LOADING TABLE

INPUT	UNIT LOAD*
An, Bn	0.83
OE _{BA}	0.64
OE _{AB}	0.15

^{*}Unit load is $\Delta l_{\rm CC}$ limit specified in Static Characteristics Chart, e.g., 2.4 mA max. @ 25° C.

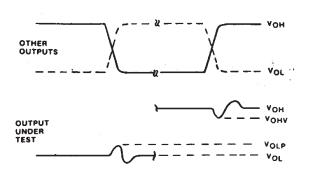
SWITCHING CHARACTERISTICS: AC Series; t,, t, = 3 ns, C, = 50 pF

, , , , , , , , , , , , , , , , , , ,	·	V _{cc} (V)	AMBI	ENT TEMPE	RATURE (T	A) - °C		
CHARACTERISTICS	SYMBOL		-40 to +85		-55 to +125		UNITS	
			MIN.	MAX.	MIN.	MAX.		
Propagation Delays: Data to Output	t _{PUH}	1.5 3.3* 5†	 3.5 2.5	108 12.2 8.7	3.4 2.4	120 13.4 9.6	ns	
Output Disable to Output	tpLz tpHz	1.5 3.3 5	 4.8 3.5	153 17.1 12.2	4.7 3.4	168 18.8 13.4	ns	
Output Enable to Output	t _{PZL} t _{PZH}	1.5 3.3 5	4.8 3.5	153 17.1 12.2	4.7 3.4	168 18.8 13.4	ns	
Power Dissipation Capacitance	CPD§	_	66	Тур.	66	Тур.	pF	
Min. (Valley) V _{OH} During Switching of Other Outputs (Output Under Test Not Switching)	V _{онv} See Fig. 1	5	4 Typ. @ 25°C			v		
Max. (Peak) Vol. During Switching of Other Outputs (Output Under Test Not Switching)	Volp See Fig. 1	5	1 Typ. @ 25°C		V			
Input Capacitance	Cı			10		10	pF	
3-State Output Capacitance	Co		_	15	_	15	pF	

SWITCHING CHARACTERISTICS: ACT Series; t_r , t_t = 3 ns, C_t = 50 pF

		V _{cc} (V)	AMB	ENT TEMPE	RATURE (T		
CHARACTERISTICS	SYMBOL		-40 to +85		-55 to +125		UNITS
		(4)	MIN.	MAX.	MIN.	MAX.	
Propagation Delays: Data to Output	tрін трні	5†	2.7	9.6	2.7	10.6	ns
Output Disable to Output	teuz tenz	5	3.7	13.1	3.6	14.4	ns
Output Enable to Output	t _{PZH} t _{PZL}	5	3.7	13.1	3.6	14.4	ns
Power Dissipation Capacitance	C _{PD} §		66	Тур.	66	Тур.	pF
Min. (Valley) V _{OH} During Switching of Other Outputs (Output Under Test Not Switching)	V _{онv} See Fig. 1	5	4 Typ. @ 25°C			V	
Max. (Peak) Vol. During Switching of Other Outputs (Output Under Test Not Switching)	V _{OLP} See Fig. 1	5	1 Тур. @ 25°С			V	
Input Capacitance	Cı			10		10	pF
3-State Output Capacitance	Co			15		15	pF

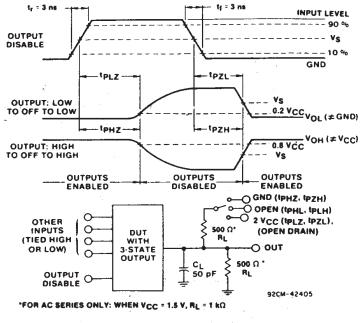
*3.3 V: min. is @ 3.6 V max. is @ 3 V


†5 V: min, is @ 5.5 V max. is @ 4.5 V

 C_{PD} is used to determine the dynamic power consumption, per channel. For AC series: $P_D = V_{CC}^2 f_i (C_{PD} + C_L)$ For ACT series: $P_D = V_{CC}^2 f_i (C_{PD} + C_L) + V_{CC} \Delta I_{CC}$ where $f_i = input$ frequency

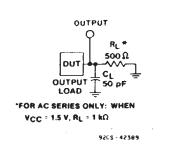
 C_L = output load capacitance

 $V_{CC} = supply voltage$


PARAMETER MEASUREMENT INFORMATION

NOTES:

- 1. VOHY AND VOLP ARE MEASURED WITH RESPECT TO A GROUND REFERENCE NEAR THE OUTPUT UNDER TEST.
- 2. INPUT PULSES HAVE THE FOLLOWING CHARACTERISTICS: PRR $\lesssim 1$ MHz, I_r = 3 ns, I_f = 3 ns, SKEW 1 ns. 3. R.F. FIXTURE WITH 700-MHz DESIGN RULES REQUIRED.
- 3. R.F. FIXTURE WITH 700-MHz DESIGN RULES REQUIRED. IC SHOULD BE SOLDERED INTO TEST BOARD AND BYPASSED WITH 0.1 LF CAPACITOR. SCOPE AND PROBES REQUIRE 700-MHz BANDWIDTH.


9205-4240€

•

Fig. 1 - Simultaneous switching transient waveforms.

Fig. 2 - Three-state propagation delay times and test circuit.

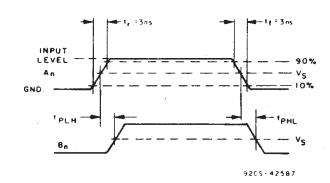


Fig. 3 - Propagation delay times and test circuit.

	CD54/74AC	CD54/74ACT
Input Level	Vcc	3 V
Input Switching Voltage, Vs	0.5 V _{cc}	1.5 V
Output Switching Voltage, Vs	0.5 V _{cc}	0.5 V _{CC}

com 26-Sep-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
CD54ACT623F3A	ACTIVE	CDIP	J	20	1	TBD	Call TI	Level-NC-NC-NC
CD74AC623E	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CD74AC623EE4	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CD74AC623M	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74AC623M96	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74AC623M96E4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74AC623ME4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74AC623NSR	ACTIVE	SO	NS	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74AC623NSRE4	ACTIVE	SO	NS	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74ACT623M96	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74ACT623M96E4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

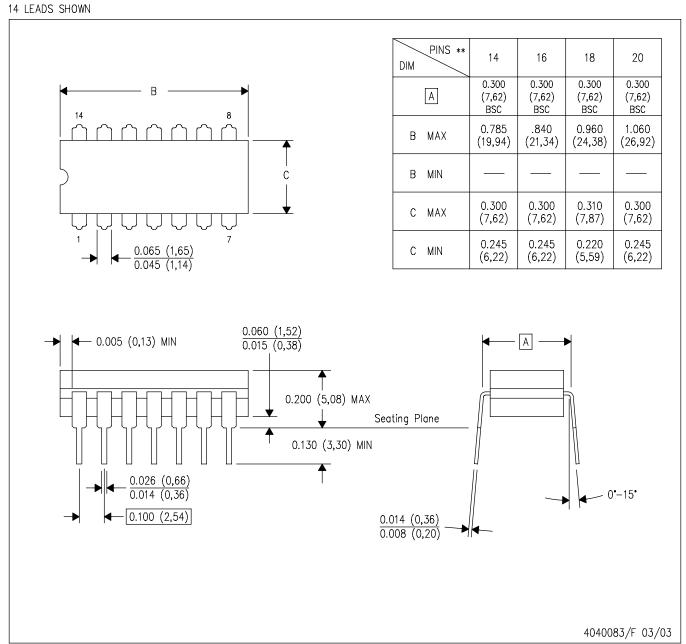
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

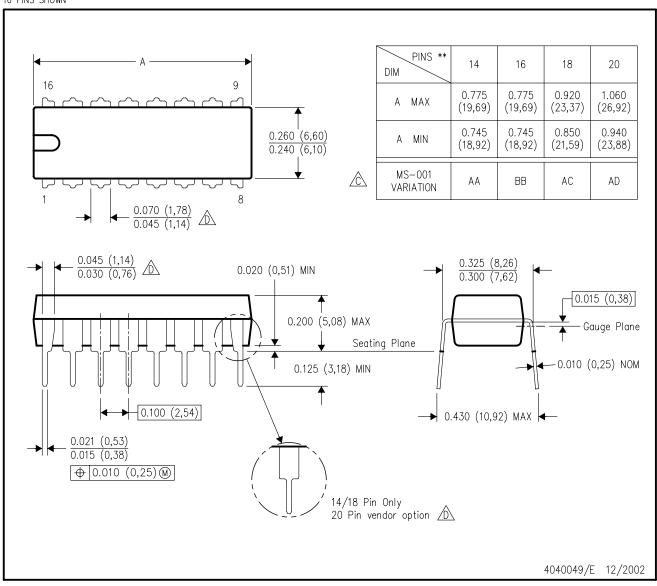

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

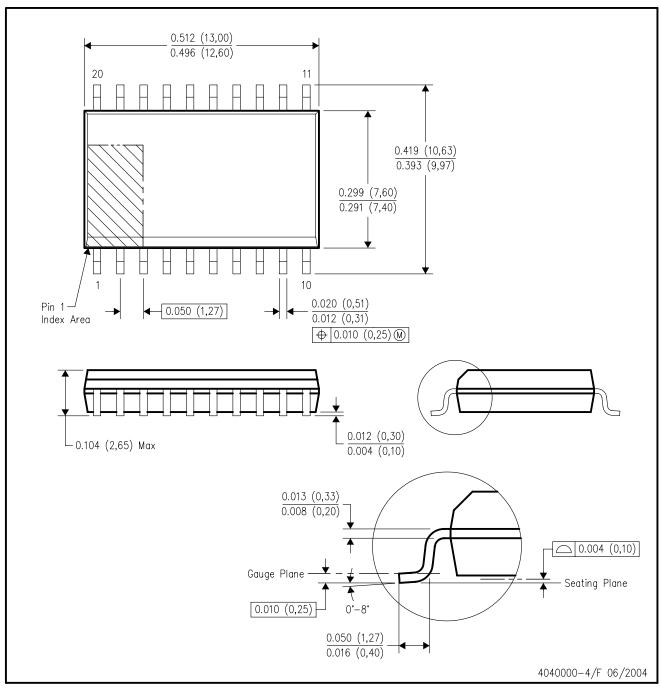
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

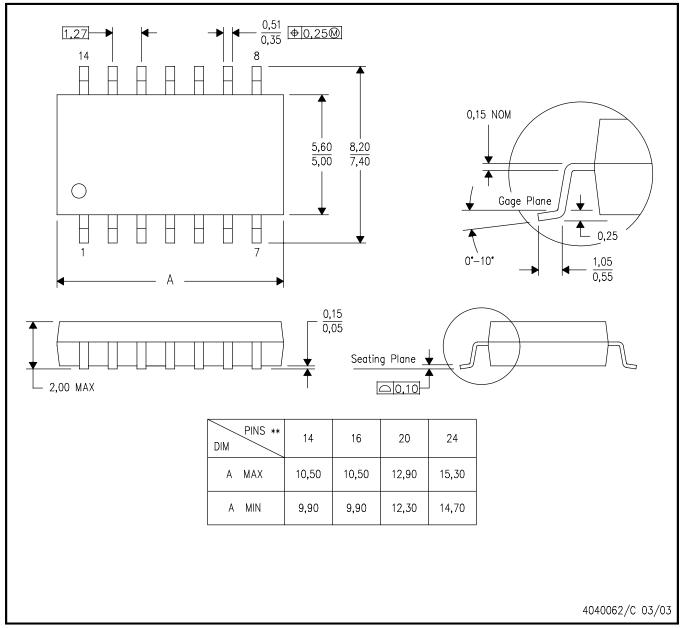

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

DW (R-PDSO-G20)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AC.



MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

- . All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265