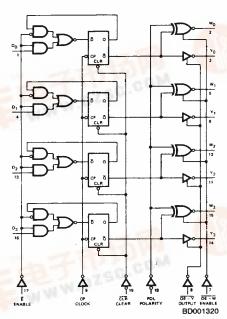
查询AM25LS2519供应商 **Am25LS2519 LS2519**加急出货

Quad Register with Two Independently Controlled Three-State Outputs

DISTINCTIVE CHARACTERISTICS

- Two sets of fully buffered three-state outputs
- Four D-type flip-flops
- Polarity control on W outputs
- Buffered common clock enable

- Buffered common asynchronous clear
- Separate buffered common output enable for each set of outputs


GENERAL DESCRIPTION

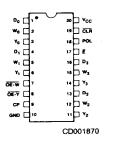
The Am25LS2519 consists of four D-type flip-flops with a buffered common clock enable. Information meeting the set-up and hold time requirements on the D inputs is transferred to the flip-flop outputs on the LOW-to-HIGH transition of the clock. Data on the Q outputs of the flip-flops is enabled at the three-state outputs when the output control ($\overline{\text{OE}}$) input is LOW. When the appropriate $\overline{\text{OE}}$ input is HIGH, the outputs are in the high impedance state. Two independent sets of outputs – W and Y – are provided such

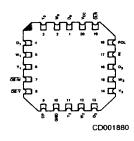
that the register can simultaneously and independently drive two buses. One set of outputs contains a polarity control such that the outputs can either be inverting or non-inverting.

The device also features an active LOW asynchronous clear. When the clear input is LOW, the Q output of the internal flip-flops are forced LOW independent of the other inputs. The Am25LS2519 is packaged in a space saving (0.3-inch row spacing) 20-pin package.

BLOCK DIAGRAM

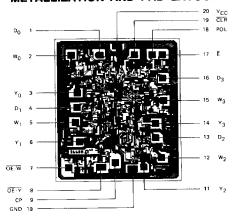
RELATED PRODUCTS


Part No.	Description
Am25S18, Am2918	Quad D Register
Am25LS2518	Quad D Register

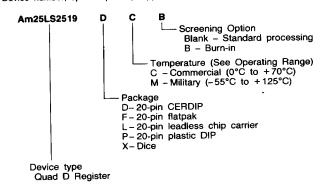


CONNECTION DIAGRAM Top View

D-20-1


L-20-1

Note: Pin 1 is marked for orientation


METALLIZATION AND PAD LAYOUT

DIE SIZE 0.083" x 0.099"

ORDERING INFORMATION

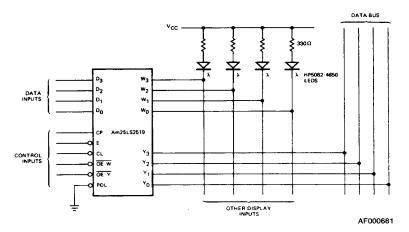
AMD products are available in several packages and operating ranges. The order number is formed by a combination of the following: Device number, speed option (if applicable), package type, operating range and screening option (if desired).

Valid Con	nbinations
Am25LS2519	PC DC, DM FM LC, LM XC, XM

Valid Combinations

Consult the AMD sales office in your area to determine if a device is currently available in the combination you wish.

PIN DESCRIPTION									
Pin No.	Name	1/0	cription						
	Di	- 1	Any of the four D flip-flop data lines.						
17	Ē	1	Clock Enable. When LOW, the data is entered into the register on the next clock LOW-to-HIGH transition. When HIGH, the data in the register remains unchanged, regardless of the data in.						
9	СР	1	Clock Pulse. Data is entered into the register on the LOW-to-HIGH transition.						
7, 8	OE-W, OE-Y	0	Output Enable. When $\overline{\text{OE}}$ is LOW, the register is enable to the output. When HIGH, the output is in the high-impedance state. The $\overline{\text{OE-W}}$ controls the W set of outputs, and $\overline{\text{OE-Y}}$ controls the Y set.						
	Yi	0	Any of the four non-inverting three-state output lines.						
	Wi	0	Any of the four three-state outputs with polarity control.						
18	POL	0	Polarity Control. The W _i outputs will be non-inverting when POL is LOW, and when it is HIGH, the outputs are inverting.						
19	CLR		Asynchronous Clear. When CLR is LOW, the internal Q flip-flops are reset to LOW.						


FUNCTION TABLE

	INPUTS						INTERNAL	OUTPUTS		
FUNCTION	СР	Di	Ē	CLR	POL	OE-W	OE-Y	a	Wi	Yi
Output Three-State Control	X X X	X X X	X X X	X X X	X X X	H	L H L	NC NC NC NC	Z Enabled Z Enabled	Enabled Z Z Z Enabled
W _i Polarity	X	×	×	X	L H	L	L L	NC NC	Non-Inverting Inverting	Non-Inverting Non-Inverting
Asynchronous Clear	X	×	×	L	L H	L	L	L L	LH	L L
Clock Enabled	† † † † †	X L H	H L L	н н н н	X L H L	X L L	X L L	NC L L H	NC L H H	NC L L H

L = LOW H = HIGH Z = High-Impedance

X = Don't Care
NC = No Change
t = LOW to HIGH Transition

APPLICATION

Convenient Register Content Monitor or Test Point

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	65°C to +150°C
Ambient Temperature Under Bias	55°C to +125°C
Supply Voltage to Ground Potential	
Continuous	0.5V to +7.0V
DC Voltage Applied to Outputs For	
High Output State	
DC Input Voltage	0.5V to +7.0V
DC Output Current, Into Outputs	30mA
DC Innuit Current	-30m4 to +50m4

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

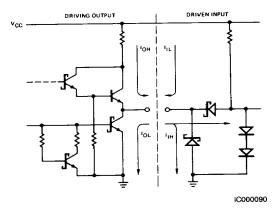
Commercial (C) Devices Temperature Supply Voltage	
Military (M) Devices	
Temperature	55°C to +125°C
Supply Voltage	+ 4.5V to + 5.5V
Operating ranges define those limit	s over which the function-
ality of the device is guaranteed.	

DC CHARACTERISTICS over operating range unless otherwise specified

P		COM'L, Ic IOL = 4.0 IOL = 8.0 IOL = 12r ogical HIGH its ogical LOW its.	mA	2.4	3.4	0.4 0.45 0.5 0.7 0.8	Volts Volts Volts Volts
P	= VIH or VIL = MIN = VIH or VIL ranteed input I age for all input anteed input I age for all input anteed input I age for all input = MIN, I _{IN} = -	I _{OL} = 4.0 I _{OL} = 8.0 I _{OL} = 12r ogical HIGH tts ogical LOW tts.	mA mA nA		3.4	0.45 0.5	Volts
Guar volta Guar volta Guar volta	Tanteed input Inge for all input	I _{OL} = 8.0 I _{OL} = 12r ogical HIGH its ogical LOW its.	mA nA MIL	2.0		0.45 0.5	Volts
Guar volta Guar volta Guar volta	Tanteed input Inge for all input	i _{OL} = 12r ogical HIGH tts ogical LOW tts.	nA MIL	2.0		0.5	Volts
Guar volta Guar volta Guar volta	anteed input I ge for all input anteed input I ge for all input = MIN, I _{IN} = -	ogical HIGH tts ogical LOW tts.	MIL	2.0		0.7	
volta Guar volta e Vcc	ge for all input ranteed input lige for all input = MIN, I _{IN} = -	ogical LOW tts. 18mA		2.0			
e V _{CC}	ge for all inpu = MIN, I _{IN} = -	ts. 18mA					Volts
e V _{CC}	ge for all inpu = MIN, I _{IN} = -	ts. 18mA	COM'L			0.8	Volts
				1			Volts
Vcc	= MAX VINI =	0.414	V _{CC} = MIN, I _{IN} = -18mA				Volts
	V _{CC} = MAX, V _{IN} = 0.4V					-0.36	mA
Vcc	V _{CC} = MAX, V _{IN} = 2.7V					20	μΑ
Vcc	= MAX, VIN =	7.0V				0.1	mA
adanca)		Vo = 0.4	V			-20	٠.,
Vcc	= MAX	$V_0 = 2.4$	V			20	μΑ
t Current V _{CC}	= MAX			- 15		-85	mA
			MIL	1	24	36	
Vcc	= MAX		COM'L	Ι	24	39	mA
1	it Current VCC ent VCC CC = 5.0V, 25°C a as MIN or MAX, utput should be sh	it Current VCC = MAX VCC = MAX	it Current V _{CC} = MAX v _{CC} = MAX v _{CC} = MAX v _{CC} = MAX v _{CC} = 5.0V, 25°C ambient and maximum loadiff as MIN or MAX, use the appropriate value suppt should be shorted at a time. Duration o	it Current V _{CC} = MAX v _{CC} = MAX v _{CC} = MAX MIL COM'L (CC = 5.0V, 25°C ambient and maximum loading. as MIN or MAX, use the appropriate value specified under upput should be shorted at a time. Duration of the short circ	it Current V _{CC} = MAX -15 Tent V _{CC} = MAX -15 V _{CC} = MAX -15 CC = 5.0V, 25°C ambient and maximum loading, as MiN or MAX, use the appropriate value specified under Operating Rar utput should be shorted at a time. Duration of the short circuit test should	it Current	it Current $V_{CC} = MAX$ $V_{O} = 2.4V$ 20 it Current $V_{CC} = MAX$ -15 -85 ient $V_{CC} = MAX$ MIL 24 36 CC = 5.0V, 25°C ambient and maximum loading. as MiN or MAX, use the appropriate value specified under Operating Ranges for the applicable devulput should be shorted at a time. Duration of the short circuit test should not exceed one second.

SWITCHING CHARACTERISTICS ($T_A = +25$ °C, $V_{CC} = 5.0V$)

Parameters	Description		ers Description Test Conditions M				Тур	Max	Units
†PHL					22	33			
tpHi.	Clock to Yi				20	30	ns		
tpLH	Clock to Wi				24	36			
t _{PHL}	(Either Polarity)				24	36	ns		
1PHL	Clear to Yi		1		29	43	ns		
†PLH	Clear to W _i		Ī		25	37			
t _{PHL}					30	45	ns		
t _{PLH}					23	34			
t _{PHL}	Polarity to Wi		C _L = 15pF		25	37	ns		
t _{pw}	Clear		$R_L = 2.0k\Omega$	18			ns		
	Clock Pulse Width	LOW		15			ns		
tpw		HIGH		18					
ts	Data Data Data Data Enable			15			ns		
th				5			ns		
ts				20			ns		
th	Data Enable			0			ns		
ts	Set-up Time, Clear Recovery (Inactive)	to clock		20	15		ns		
tzH					11	17			
tzL	Output Enable to V	V or Y			13	20	ns		
tHZ			C _L = 5.0pF		13	20	ns		
tLZ	Output Enable to V	V or Y	$R_L = 2.0k\Omega$,	11	17	ris		
f _{max}	Maximum Clock Fre	equency (Note 1)	C _L = 15pF R _L = 2.0kΩ	35	45		MHz		


Note 1. Per industry convention, f_{max} is the worst case value of the maximum device operating frequency with no constraints on t_r, t_f, pulse width or duty cycle.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified*

				COMMERCIAL		MILIT		
				Am25l	_S2519	Am25LS2519		
Parameters	Des	cription	Test Conditions	Min	Max	Min	Max	Units
t _{PLH}	Clock to Yi				39		42	
tPHL			1		39		45	ns
tPLH	Clock to W _i (Either Polarity)				41		43	
t _{PHL}					44	48		ns
t _{PHL}	Clear to Yi		7 [52		58	ns
t _{PLH}	1		7 [42		43	
t _{PHL}	Clear to W _i Polarity to W _i				51		53	ns
tPLH			7		41		45	
t _{PHL}			C _L = 50pF		42		44	ns
tpw	Clear		R _L = 2.0kΩ	20		20		ns
P **	1	LOW	7	20		20		
t _{pw}	Clock HIGH	7	20		20		ns ns	
t _s	Data		7	15		15		
th			T	10		10		
ts	Data Enable		7 [25		25		ns
th	Data Enable		7 [0		0		ns
ts	Set-up Time, Clear Recovery (Inactive) to Clock Output Enable to W _i or Y _i		7 [23		24		ns
^t zh			7 [24		27	_
tzı					29		35	
thz			Cr = 5.0pF		33		45	
۱.z	Output Enabl	e to Wior Yi	$C_L = 5.0 pF$ $R_L = 2.0 k\Omega$		22		26	ns
f _{max}	Maximum Clo (Note 1)	ock Frequency	$C_L = 5.0 pF$ $R_L = 2.0 k\Omega$	30		25		MHz

*AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.

Am25LS2519 LOW-POWER SCHOTTKY INPUT/OUTPUT CURRENT INTERFACE CONDITIONS

Note: Actual current flow direction shown.