ADVANCED POWER TECHNOLOGY®

APT10045JLL

1000V 21A 0.450Ω

POWER MOS 7™

Power MOS 7^{TM} is a new generation of low loss, high voltage, N-Channel enhancement mode power MOSFETS. Both conduction and switching losses are addressed with Power MOS 7^{TM} by significantly lowering $R_{\text{DS(ON)}}$ and Q_g . Power MOS 7^{TM} combines lower conduction and switching losses along with exceptionally fast switching speeds inherent with APT's patented metal gate structure.

- Increased Power Dissipation
- Lower Miller Capacitance
- Easier To Drive
- Lower Gate Charge, Qg
- Popular SOT-227 Package

MAXIMUM RATINGS

All Ratings: $T_C = 25^{\circ}$ C unless otherwise specified.

Symbol	Parameter	APT0045JLL	UNIT	
V _{DSS}	Drain-Source Voltage	1000	Volts	
I _D	Continuous Drain Current @ T _C = 25°C	21	Amps	
I _{DM}	Pulsed Drain Current ①	84		
V _{GS}	Gate-Source Voltage Continuous	±30	Volts	
V _{GSM}	Gate-Source Voltage Transient	±40		
P _D	Total Power Dissipation @ T _C = 25°C	460	Watts	
	Linear Derating Factor	3.68	W/°C	
T_J, T_STG	Operating and Storage Junction Temperature Range	-55 to 150	°C	
T _L	Lead Temperature: 0.063" from Case for 10 Sec.	300		
I _{AR}	Avalanche Current (Repetitive and Non-Repetitive)	21	Amps	
E _{AR}	Repetitive Avalanche Energy ①	50	m	
E _{AS}	Single Pulse Avalanche Energy ⁽⁴⁾	2500	mJ	

STATIC ELECTRICAL CHARACTERISTICS

		100			
Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT
BV _{DSS}	Drain-Source Breakdown Voltage (V _{GS} = 0V, I _D = 250μA)	1000			Volts
I _{D(on)}	On State Drain Current ② $(V_{DS} > I_{D(on)} \times R_{DS(on)} Max, V_{GS} = 10V)$	21			Amps
R _{DS(on)}	Drain-Source On-State Resistance ② (V _{GS} = 10V, 0.5 I _{D[Cont.]})			0.450	Ohms
I _{DSS}	Zero Gate Voltage Drain Current (V _{DS} = V _{DSS} , V _{GS} = 0V)			100	μΑ
	Zero Gate Voltage Drain Current $(V_{DS} = 0.8 V_{DSS}, V_{GS} = 0V, T_{C} = 125$ °C)			500	
I _{GSS}	Gate-Source Leakage Current $(V_{GS} = \pm 30V, V_{DS} = 0V)$			±100	nA
V _{GS(th)}	Gate Threshold Voltage $(V_{DS} = V_{GS}, I_{D} = 2.5 \text{mA})$	3		5	Volts

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

APT Website - http://www.advancedpower.com

USA

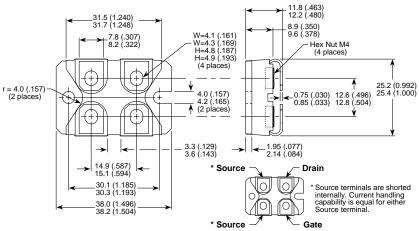
DYNAMIC CHARACTERISTICS

Δ	P٦	Г1	n	U	45	. 1	ı	ı

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
C _{iss}	Input Capacitance	V _{GS} = 0V		4335		
C _{oss}	Output Capacitance	V _{DS} = 25V		720		pF
C _{rss}	Reverse Transfer Capacitance	f = 1 MHz		129		
Q_g	Total Gate Charge ^③	V _{GS} = 10V		159		
Q _{gs}	Gate-Source Charge	$V_{DD} = 0.5 V_{DSS}$		19		nC
Q_{gd}	Gate-Drain ("Miller") Charge	$I_{D} = I_{D[Cont.]} @ 25^{\circ}C$		101		
t _{d(on)}	Turn-on Delay Time	V _{GS} = 15V		10		
t _r	Rise Time	$V_{DD} = 0.5 V_{DSS}$		7		ns
t _{d(off)}	Turn-off Delay Time	$I_{D} = I_{D[Cont.]} @ 25^{\circ}C$		32		113
t _f	Fall Time	$R_{G} = 0.6\Omega$		8		

SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT
I _s	Continuous Source Current (Body Diode)			21	Amna
I _{SM}	Pulsed Source Current ① (Body Diode)			84	Amps
V _{SD}	Diode Forward Voltage ② (V _{GS} = 0V, I _S = -I _{D[Cont.]})			1.3	Volts
t rr	Reverse Recovery Time $(I_S = -I_{D[Cont.]}, dI_S/dt = 100A/\mu s)$		560		ns
Q _{rr}	Reverse Recovery Charge $(I_S = -I_{D[Cont.]}, dI_S/dt = 100A/\mu s)$		20.7		μC
dv/ _{dt}	Peak Diode Recovery dv/ _{dt} (5)			10	V/ns


THERMAL CHARACTERISTICS

Symbol	Characteristic	MIN	TYP	MAX	UNIT
$R_{ hetaJC}$	Junction to Case			0.27	°C/W
$R_{ hetaJA}$	Junction to Ambient			40	C/VV

① Repetitive Rating: Pulse width limited by maximum junction temperature.

APT Reserves the right to change, without notice, the specifications and information contained herein.

SOT-227 (ISOTOP®) Package Outline

Dimensions in Millimeters and (Inches)

² Pulse Test: Pulse width < 380 µs, Duty Cycle < 2%

③ See MIL-STD-750 Method 3471

 $[\]textcircled{4}$ Starting T_j = +25°C, L = 11.34mH, R_G = 25 Ω , Peak I_L = 21A

⁽⁵⁾ $dv/_{dt}$ numbers reflect the limitations of the test circuit rather than the device itself. $v_{s} \le -v_{D[Cont.]}$ $v_{t} \le 700 \text{A/µs}$ $v_{t} \le v_{DSS}$ $v_{t} \le 150 \text{°C}$