捷多邦,专业PCB打样工厂,24小时加**多N**第4LVC1G374 SINGLE D-TYPE FLIP-FLOP SCES520A - DECEMBER 2003 - REVISED JUNE 2004 - Available in the Texas Instruments NanoStar™ and NanoFree™ Packages - Supports 5-V V_{CC} Operation - Inputs Accept Voltages to 5.5 V - Max t_{pd} of 4 ns at 3.3 V - Low Power Consumption, 10-μA Max I_{CC} - ±24-mA Output Drive at 3.3 V - I_{off} Supports Partial-Power-Down Mode Operation - Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II - ESD Protection Exceeds JESD 22 - 2000-V Human-Body Model (A114-A) - 200-V Machine Model (A115-A) - 1000-V Charged-Device Model (C101) ## DBV OR DCK PACKAGE (TOP VIEW) ## YEP OR YZP PACKAGE (BOTTOM VIEW) | D | 03 | 40 | Q | |-----|----|----|----------| | GND | 02 | 50 | V_{CC} | | CLK | 01 | 60 | OE | | | | | | ### description/ordering information This single D-type flip-flop is designed for 1.65-V to 5.5-V V_{CC} operation. The SN74LVC1G374 features a 3-state output designed specifically for driving highly capacitive or relatively low-impedance loads. This device is particularly suitable for implementing buffer registers, input/output (I/O) ports, bidirectional bus drivers, and working registers. NanoStar™ and NanoFree™ package technology is a major breakthrough in IC packaging concepts, using the die as the package. On the positive transition of the clock (CLK) input, the Q output is set to the logic level set up at the data (D) input. #### ORDERING INFORMATION | TA | PACKAGET | ORDERABLE
PART NUMBER | TOP-SIDE
MARKING‡ | | | |---------------|--|--------------------------|----------------------|------|--| | 维国 | NanoStar™ – WCSP (DSBGA)
0.23-mm Large Bump – YEP | | SN74LVC1G374YEPR | | | | | NanoFree [™] – WCSP (DSBGA)
0.23-mm Large Bump – YZP (Pb-free) | Reel of 3000 | SN74LVC1G374YZPR | D4_ | | | -40°C to 85°C | | Reel of 3000 | SN74LVC1G374DBVR | CA4_ | | | | SOT (SOT-23) – DBV | Reel of 250 | SN74LVC1G374DBVT | | | | | COT (CC 70) | Reel of 3000 | SN74LVC1G374DCKR | D4 | | | | SOT (SC-70) – DCK | Reel of 250 | SN74LVC1G374DCKT | D4_ | | [†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. DBV/DCK: The actual top-side marking has one additional character that designates the assembly/test site. YEP/YZP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site. Pin 1 identifier indicates solder-bump composition (1 = SnPb, • = Pb-free). SCES520A - DECEMBER 2003 - REVISED JUNE 2004 ### description/ordering information (continued) A buffered output-enable (\overline{OE}) input can be used to place the output in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the output neither loads nor drives the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components. OE does not affect the internal operations of the flip-flop. Old data can be retained or new data can be entered while the outputs are in the high-impedance state. To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. ### **FUNCTION TABLE** | | INPUTS | OUTPUT | | |----|------------|--------|---| | OE | CLK | D | Q | | L | 1 | L | L | | L | \uparrow | Н | Н | | L | H or L | Χ | Q | | Н | Χ | Χ | Z | ### logic diagram (positive logic) ## SN74LVC1G374 SINGLE D-TYPE FLIP-FLOP WITH 3-STATE OUTPUT SCES520A - DECEMBER 2003 - REVISED JUNE 2004 | absolute maximum ratings over operating free-air temperature range (unless otherwise noted) † | |--| | Supply voltage range, V_{CC} | | (see Note 1) | | Voltage range applied to any output in the high or low state, V _O | | (see Notes 1 and 2) | | Input clamp current, I_{IK} (V_I < 0) | | Continuous output current, IO | | Continuous current through V _{CC} or GND±100 mA | | Package thermal impedance, θ_{JA} (see Note 3): DBV package | | DCK package 259°C/W YEP/YZP package 123°C/W | | Storage temperature range, T _{stg} 65°C to 150°C | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. - NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed. - 2. The value of V_{CC} is provided in the recommended operating conditions table. - 3. The package thermal impedance is calculated in accordance with JESD 51-7. ## **SN74LVC1G374** SINGLE D-TYPE FLIP-FLOP WITH 3-STATE OUTPUT SCES520A – DECEMBER 2003 – REVISED JUNE 2004 ### recommended operating conditions (see Note 4) | | | | MIN | MAX | UNIT | |----------|--|--|-------------------------|-----------------------|------| | ., | Ownstrans | Operating | 1.65 | 5.5 | ., | | VCC | Supply voltage | Data retention only | 1.5 | | V | | | | V _{CC} = 1.65 V to 1.95 V | 0.65 × V _C C | | | | ., | Lifeth James Computer of Computer on Computer of Compu | V _{CC} = 2.3 V to 2.7 V | | | ., | | V_{IH} | High-level input voltage | V _{CC} = 3 V to 3.6 V | 2 | | V | | | | V _{CC} = 4.5 V to 5.5 V | 0.7×V _{CC} | | | | | | V _{CC} = 1.65 V to 1.95 V | | $0.35 \times V_{CC}$ | | | ., | | V _{CC} = 2.3 V to 2.7 V | | 0.7 | ., | | V_{IL} | Low-level input voltage | V _{CC} = 3 V to 3.6 V | | 0.8 | V | | | | V _{CC} = 4.5 V to 5.5 V | | 0.3 × V _{CC} | | | VI | Input voltage | | 0 | 5.5 | V | | VO | Output voltage | | 0 | VCC | V | | | | V _{CC} = 1.65 V | | -4 | | | | | V _{CC} = 2.3 V | | -8 | | | lOH | High-level output current | | | -16 | mA | | | | VCC = 3 V | | -24 | | | | | V _{CC} = 4.5 V | | -32 | | | | | V _{CC} = 1.65 V | | 4 | | | | | V _{CC} = 2.3 V | | 8 | | | IOL | Low-level output current | | | 16 | mA | | - | | VCC = 3 V | | 24 | | | | | V _{CC} = 4.5 V | | | | | | | $V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}, 2.5 \text{ V} \pm 0.2 \text{ V}$ | | 20 | | | Δt/Δν | Input transition rise or fall rate | $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 10 | | ns/V | | | | V _{CC} = 5 V ± 0.5 V | | 5 | | | TA | Operating free-air temperature | · | -40 | 85 | °C | NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. SCES520A - DECEMBER 2003 - REVISED JUNE 2004 ## electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | PARAMETER | TEST CONDITIONS | | Vcc | MIN | TYP [†] | MAX | UNIT | |------------------|---------------------------------------|--|-----------------|----------------------|------------------|------|------| | | I _{OH} = -100 μA | | 1.65 V to 5.5 V | V _{CC} -0.1 | | | | | | I _{OH} = -4 mA | | 1.65 V | 1.2 | | | | | | $I_{OH} = -8 \text{ mA}$ | | 2.3 V | 1.9 | | | | | VOH | I _{OH} = -16 mA | 2.1/ | 2.4 | | | V | | | | I _{OH} = -24 mA | 3 V | 2.3 | | | | | | | $I_{OH} = -32 \text{ mA}$ | 4.5 V | 3.8 | | | | | | | I _{OL} = 100 μA | 1.65 V to 5.5 V | | | 0.1 | | | | | I _{OL} = 4 mA | | 1.65 V | | | 0.45 | | | | $I_{OL} = 8 \text{ mA}$ | 2.3 V | | | 0.3 | | | | VOL | I _{OL} = 16 mA | 6.17 | | | 0.4 | V | | | | I _{OL} = 24 mA | 3 V | | | 0.55 | | | | | I _{OL} = 32 mA | | 4.5 V | | | 0.55 | | | lį | V _I = 5.5 V or GND | | 0 to 5.5 V | | | ±1 | μΑ | | loz | $V_0 = 0 \text{ to } 5.5 \text{ V}$ | | 1.65 V to 5.5 V | | | ±5 | μΑ | | l _{off} | V_I or $V_O = 5.5 V$ | | 0 | | | ±10 | μΑ | | Icc | $V_I = 5.5 \text{ V or GND},$ | IO = 0 | 1.65 V to 5.5 V | | | 10 | μΑ | | ΔlCC | One input at V _{CC} – 0.6 V, | Other inputs at V _{CC} or GND | 3 V to 5.5 V | | | 500 | μΑ | | C _i | $V_I = V_{CC}$ or GND | | 3.3 V | | 3 | | pF | | Co | $V_O = V_{CC}$ or GND | | 3.3 V | | 6 | | pF | [†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. ## timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1) | | | V _{CC} = 1.8 V
± 0.15 V | | V _{CC} = 2.5 V
± 0.2 V | | V _{CC} = 3.3 V
± 0.3 V | | V _{CC} = 5 V
± 0.5 V | | UNIT | |-----------------|---------------------------------|-------------------------------------|-----|------------------------------------|-----|------------------------------------|-----|----------------------------------|-----|------| | | | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | | | fclock | Clock frequency | | 100 | | 125 | | 150 | | 175 | MHz | | t _W | Pulse duration, CLK high or low | 3.3 | | 3 | | 2.8 | | 2.5 | | ns | | t _{su} | Setup time, data before CLK↑ | 3.5 | | 2.5 | | 2 | | 1.5 | | ns | | th | Hold time, data after CLK↑ | 3.4 | | 1.6 | | 1.5 | | 1.5 | | ns | # switching characteristics over recommended operating free-air temperature range, C_L = 15 pF (unless otherwise noted) (see Figure 1) | PARAMETER | FROM | TO (OUTPUT) | V _{CC} = ± 0.1 | | V _{CC} = | | V _{CC} = | | V _{CC} = | | UNIT | |------------------|---------|-------------|-------------------------|-----|-------------------|-----|-------------------|-----|-------------------|-----|------| | | (INPUT) | (OUTPUT) | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | | | f _{max} | | | 100 | | 125 | | 150 | | 175 | | MHz | | ^t pd | CLK | Q | 2.5 | 15 | 2 | 6 | 1.4 | 4 | 1 | 3 | ns | | t _{en} | ŌĒ | Q | 2.2 | 12 | 2 | 4.8 | 1.3 | 3.8 | 1.1 | 2.5 | ns | | ^t dis | ŌĒ | Q | 2.2 | 11 | 2 | 4.8 | 1.6 | 4.5 | 1.2 | 3.1 | ns | ## **SN74LVC1G374** SINGLE D-TYPE FLIP-FLOP WITH 3-STATE OUTPUT SCES520A – DECEMBER 2003 – REVISED JUNE 2004 # switching characteristics over recommended operating free-air temperature range, C_L = 30 pF or 50 pF (unless otherwise noted) (see Figure 2) | PARAMETER | FROM | TO (OUTPUT) | V _{CC} = | | UNIT | |------------------|---------|-------------|-------------------|------|-------------------|-----|-------------------|-----|-------------------|-----|------| | | (INPUT) | (OUTPUT) | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | | | f _{max} | | | 100 | | 125 | | 150 | | 175 | | MHz | | ^t pd | CLK | Q | 2.7 | 18.3 | 1.8 | 8.2 | 1.6 | 6 | 1 | 4 | ns | | t _{en} | ŌĒ | Q | 2 | 13 | 1.5 | 6.3 | 0.9 | 5 | 0.7 | 3.5 | ns | | t _{dis} | ŌĒ | Q | 2 | 14 | 1.1 | 5.3 | 1.4 | 4.5 | 0.8 | 3.1 | ns | ### operating characteristics, $T_A = 25^{\circ}C$ | PARAMETER | | TEST | V _{CC} = 1.8 V | V _{CC} = 2.5 V | V _{CC} = 3.3 V | $V_{CC} = 5 V$ | LINUT | | | |-----------------|-----------------------------------|------------------|-------------------------|-------------------------|-------------------------|----------------|-------|------|--| | | PARAMETER | | CONDITIONS | TYP | TYP | TYP | TYP | UNIT | | | C . | Power dissipation Outputs enabled | | (40 MH | 24 | 24 | 25 | 27 | | | | C _{pd} | capacitance | Outputs disabled | f = 10 MHz | 8 | 8 | 9 | 11 | pF | | ### PARAMETER MEASUREMENT INFORMATION | TEST | S1 | |-----------|-------| | tPLH/tPHL | Open | | tPLZ/tPZL | VLOAD | | tPHZ/tPZH | GND | | v | INPUTS | | ., | | • | | ., | | |--------------------|--------|--------------------------------|--------------------|-------------------|-------|--------------|--------------------------------|--| | VCC | ٧I | t _r /t _f | | VLOAD | CL | RL | $v_{\scriptscriptstyle\Delta}$ | | | 1.8 V \pm 0.15 V | VCC | ≤2 ns | V _{CC} /2 | 2×VCC | 15 pF | 1 M Ω | 0.15 V | | | 2.5 V \pm 0.2 V | VCC | ≤2 ns | V _{CC} /2 | 2×VCC | 15 pF | 1 M Ω | 0.15 V | | | 3.3 V \pm 0.3 V | 3 V | ≤2.5 ns | 1.5 V | 6 V | 15 pF | 1 M Ω | 0.3 V | | | 5 V ± 0.5 V | VCC | ≤2.5 ns | V _{CC} /2 | 2×V _{CC} | 15 pF | 1 M Ω | 0.3 V | | NOTES: A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_O = 50 Ω. - D. The outputs are measured one at a time, with one transition per measurement. - E. tpl 7 and tpH7 are the same as tdis. - F. tpzL and tpzH are the same as ten. - G. tpLH and tpHL are the same as tpd. - H. All parameters and waveforms are not applicable to all devices. Figure 1. Load Circuit and Voltage Waveforms ### PARAMETER MEASUREMENT INFORMATION | TEST | S 1 | |-----------|-------------------| | tPLH/tPHL | Open | | tPLZ/tPZL | V _{LOAD} | | tPHZ/tPZH | GND | | | INPUTS | | ., | ,, | | _ | ., | |--------------------|--------|--------------------------------|--------------------|-------------------|-------|--------------|------------| | VCC | ٧I | t _r /t _f | VM | VLOAD | CL | RL | V_Δ | | 1.8 V \pm 0.15 V | VCC | ≤2 ns | V _{CC} /2 | 2×V _{CC} | 30 pF | 1 k Ω | 0.15 V | | 2.5 V \pm 0.2 V | VCC | ≤2 ns | V _{CC} /2 | 2×VCC | 30 pF | 500 Ω | 0.15 V | | 3.3 V \pm 0.3 V | 3 V | ≤2.5 ns | 1.5 V | 6 V | 50 pF | 500 Ω | 0.3 V | | 5 V \pm 0.5 V | VCC | ≤2.5 ns | V _{CC} /2 | 2×VCC | 50 pF | 500 Ω | 0.3 V | - NOTES: A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω . - D. The outputs are measured one at a time, with one transition per measurement. - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} . - F. tpzL and tpzH are the same as ten. - G. tpLH and tpHL are the same as tpd. - H. All parameters and waveforms are not applicable to all devices. Figure 2. Load Circuit and Voltage Waveforms ## DBV (R-PDSO-G6) ### PLASTIC SMALL-OUTLINE PACKAGE NOTES: - A. All linear dimensions are in millimeters. - This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion. D. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation. - Falls within JEDEC MO-178 Variation AB, except minimum lead width. ### DCK (R-PDSO-G6) ### PLASTIC SMALL-OUTLINE PACKAGE NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion. - D. Falls within JEDEC MO-203 ## YZP (R-XBGA-N6) ### DIE-SIZE BALL GRID ARRAY NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. NanoFree™ package configuration. - D. This package is lead-free. Refer to the 6 YEP package (drawing 4204725) for tin-lead (SnPb). NanoFree is a trademark of Texas Instruments. ## YEP (R-XBGA-N6) ### DIE-SIZE BALL GRID ARRAY NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. NanoStar™ package configuration. - D. This package is tin-lead (SnPb). Refer to the 6 YZP package (drawing 4204741) for lead-free. NanoStar is a trademark of Texas Instruments. #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | Products | | Applications | | |------------------|------------------------|--------------------|---------------------------| | Amplifiers | amplifier.ti.com | Audio | www.ti.com/audio | | Data Converters | dataconverter.ti.com | Automotive | www.ti.com/automotive | | DSP | dsp.ti.com | Broadband | www.ti.com/broadband | | Interface | interface.ti.com | Digital Control | www.ti.com/digitalcontrol | | Logic | logic.ti.com | Military | www.ti.com/military | | Power Mgmt | power.ti.com | Optical Networking | www.ti.com/opticalnetwork | | Microcontrollers | microcontroller.ti.com | Security | www.ti.com/security | | | | Telephony | www.ti.com/telephony | | | | Video & Imaging | www.ti.com/video | | | | Wireless | www.ti.com/wireless | Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265