
捷多邦,专业PCB打样工厂,24小时加急出**SN74HC4851**

8-CHANNEL ANALOG MULTIPLEXER/DEMULTIPLEXER WITH INJECTION-CURRENT EFFECT CONTROL

SCLS542B - SEPTEMBER 2003 - REVISED JANUARY 2004

- Injection-Current Cross Coupling <1mV/mA (see Figure 1)
- Low Crosstalk Between Switches
- Pin Compatible With SN74HC4051, SN74LV4051A, and CD4051B
- 2-V to 6-V V_{CC} Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

D, DGV, N, OR PW PACKAGE (TOP VIEW)

NC - No internal connection

description/ordering information

This eight-channel CMOS analog multiplexer/demultiplexer is pin compatible with the '4051 function and, additionally, features injection-current effect control, which has excellent value in automotive applications where voltages in excess of normal supply voltages are common.

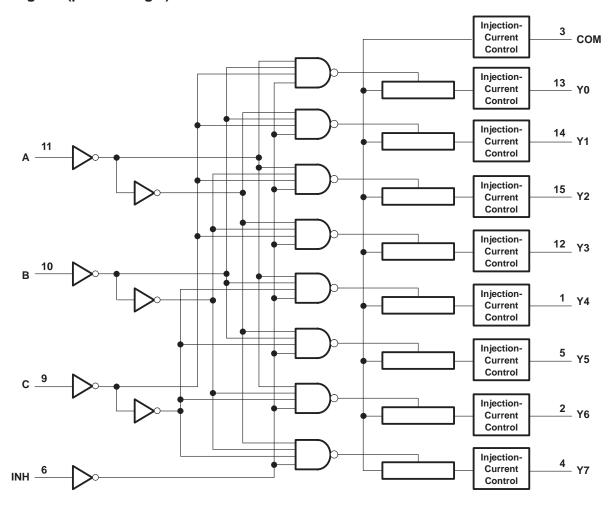
The injection-current effect control allows signals at disabled analog input channels to exceed the supply voltage without affecting the signal of the enabled analog channel. This eliminates the need for external diode/resistor networks typically used to keep the analog channel signals within the supply-voltage range.

ORDERING INFORMATION

TA	PACK	AGE†	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP – N	Tube	SN74HC4851N	HC4851N
	0010 D	Tube	SN74HC4851D	1104054 BZ5V
–40°C to 125°C	SOIC - D	Tape and reel	SN74HC4851DR	HC4851
-40°C to 125°C	TOOOD DW	Tube	SN74HC4851PW	1104054
	TSSOP – PW	Tape and reel	SN74HC4851PWR	HC4851
	TVSOP - DGV	Tape and reel	SN74HC4851DGVR	HC4851

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



SN74HC4851 8-CHANNEL ANALOG MULTIPLEXER/DEMULTIPLEXER WITH INJECTION-CURRENT EFFECT CONTROL SCLS542B – SEPTEMBER 2003 – REVISED JANUARY 2004

FUNCTION TAB

	INP	UTS		ON
INH	С	В	Α	CHANNEL
L	L	L	L	Y0
L	L	L	Н	Y1
L	L	Н	L	Y2
L	L	Н	Н	Y3
L	Н	L	L	Y4
L	Н	L	Н	Y5
L	Н	Н	L	Y6
L	Н	Н	Н	Y7
Н	Χ	Χ	X	None

logic diagram (positive logic)

8-CHANNEL ANALOG MULTIPLEXER/DEMULTIPLEXER WITH INJECTION-CURRENT EFFECT CONTROL

SCLS542B - SEPTEMBER 2003 - REVISED JANUARY 2004

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}		0.5 V to 7 V
Input voltage range, V _I (see Note 1)		
Switch I/O voltage range, V _{IO} (see Notes 1 and	d 2)	$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$).		±20 mA
I/O diode current, I _{IOK} (V _{IO} < 0 or V _{IO} > V _{CC})		±20 mA
Switch through current, $I_T (V_{IO} = 0 \text{ to } V_{CC})$		±25 mA
Continuous current through V _{CC} or GND		±50 mA
Package thermal impedance, θ _{JA} (see Note 3):	: D package	73°C/W
	DGV package	120°C/W
	N package	67°C/W
	PW package	108°C/W
Storage temperature range, T _{stg}		–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
 - 2. This value is limited to 5.5 V maximum.
 - 3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT
Vcc	Supply voltage		2	6	V
	V _{CC} = 2 V		1.5		
		V _{CC} = 3 V	2.1		
V_{IH}	High-level input voltage, control inputs	V _{CC} = 3.3 V	2.3		V
	Control inputs	V _{CC} = 4.5 V	3.15		
		V _{CC} = 6 V	4.2		
		V _{CC} = 2 V		0.5	
		V _{CC} = 3 V		0.9	
V_{IL}	Low-level input voltage, control inputs	V _{CC} = 3.3 V		1	V
	Control inputs	V _{CC} = 4.5 V		1.35	
		V _{CC} = 6 V		1.8	
٧ı	Control input voltage		0	VCC	V
V _{IO}	Input/output voltage		0	Vcc	V
		V _{CC} = 2 V		1000	
		V _{CC} = 3 V		800	
$\Delta t/\Delta v$	Input transition rise or fall time	V _{CC} = 3.3 V		700	ns
		V _{CC} = 4.5 V		500	
		V _{CC} = 6 V		400	
TA	Operating free-air temperature		-40	125	°C

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN74HC4851 8-CHANNEL ANALOG MULTIPLEXER/DEMULTIPLEXER WITH INJECTION-CURRENT EFFECT CONTROL SCLS542B – SEPTEMBER 2003 – REVISED JANUARY 2004

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	DADAMETED	TEGT CONDITIONS	.,	T,	4 = 25°C	;	UP TO	85°C	UP TO	125°C	LINUT
	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
			2.V		500	650		670		700	
		$I_T \le 2 \text{ mA},$	3 V		215	280		320		360	
ron	On-state switch resistance	$V_I = V_{CC}$ to GND,	3.3 V		210	270		305		345	Ω
	SWILCH TESISLATICE	VINH = VIL (see Figure 5)	4.5 V		160	210		240		270	
			6 V		150	195		220		250	
			2.V		4	10		15		20	
	Difference in	I _T ≤ 2 mA,	3 V		2	8		12		16	
Δron	on-state resistance	$V_{I} = V_{CC}/2,$	3.3 V		2	8		12		16	Ω
	between switches	VINH = VIL	4.5 V		2	8		12		16	
			6 V		3	9		13		18	
l _l	Control input current	$V_I = V_{CC}$ or GND	6 V			±0.1		±0.1		±1	μΑ
	Off-state switch leakage current (any one channel)	V _I = V _{CC} or GND, V _{INH} = V _{IH} (see Figure 6)	,			±0.1		±0.5		±1	
IS(off)	Off-state switch leakage current (common channel)	V _I = V _{CC} or GND, V _{INH} = V _{IH} (see Figure 7)	6 V			±0.2		±2		±4	μΑ
IS(on)	On-state switch leakage current	V _I = V _{CC} or GND, V _{INH} = V _{IL} (see Figure 8)	6 V			±0.1		±0.5		±1	μА
ICC	Supply current	$V_I = V_{CC}$ or GND	6 V			2		20		40	μΑ
C _{IC}	Control input capacitance	A, B, C, INH			3.5	10		10		10	pF
CIS	Common terminal capacitance	Switch off			22	40		40		40	pF
COS	Switch terminal capacitance	Switch off			6.7	15		15		15	pF

injection current coupling specifications, $T_A = -40$ °C to 125°C

	PARAMETER	VCC	TEST CO	NDITIONS	MIN TY	T MAX	UNIT
		3.3 V		1 + 4 - 4	0.	05 1	
		5 V	D 10010	I _I ‡ ≤ 1 mA	(.1 1	
		3.3 V	$R_S \le 3.9 \text{ k}\Omega$	1 +	0.3	45 5	
V∆ _{out}	Maximum shift of output voltage of enabled analog	5 V		I _I ‡ ≤ 10 mA	0.0	67 5	\/
v∆out	channel	3.3 V		. +	0.	05 2	mV
		5 V	D - < 20 kg	I _I ‡ ≤ 1 mA	0.	11 2	
		3.3 V	$R_S \le 20 \text{ k}\Omega$	I _I ‡ ≤ 10 mA	0.	05 20	
				1 + ≥ 10 MA	0.0	24 20	

[†] Typical values are measured at T_A = 25°C. ‡ I_I = total current injected into all disabled channels

SN74HC4851 8-CHANNEL ANALOG MULTIPLEXER/DEMULTIPLEXER WITH INJECTION-CURRENT EFFECT CONTROL SCLS542B – SEPTEMBER 2003 – REVISED JANUARY 2004

switching characteristics over recommended operating free-air temperature range, V_{CC} = 2 V, C_L = 50 pF (unless otherwise noted) (see Figures 9–14)

	PARAMETER FROM TO		то	T	λ = 25°C	;	UP TO	85°C	UP TO	125°C	LINUT
F	ARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN MAX		MIN	MAX	UNIT
tPLH tPHL	Propagation delay time	COM or Yn	Yn or COM		19.5	25		29		32	ns
tPLH tPHL	Propagation delay time	Channel Select	COM or Yn		23	30		35		40	ns
^t PZH ^t PZL	Enable delay time	INH	COM or Yn			95		105		115	ns
^t PHZ ^t PLZ	Disable delay time	INH	COM or Yn			95		105		115	ns

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3 V, C_L = 50 pF (unless otherwise noted) (see Figures 9–14)

	ADAMETED	FROM	то	T _A = 25°C		UP TO	85°C	UP TO	125°C	LINUT	
F	PARAMETER	(INPUT)	(OUTPUT)	OUTPUT) MIN 1		MAX	MIN	MAX	MIN	MAX	UNIT
tPLH tPHL	Propagation delay time	COM or Yn	Yn or COM		12	15.5		17.5		19.5	ns
tPLH tPHL	Propagation delay time	Channel Select	COM or Yn		13.5	17.5		20		23	ns
tPZH tPZL	Enable delay time	INH	COM or Yn			90		100		110	ns
^t PHZ ^t PLZ	Disable delay time	INH	COM or Yn			90		100		110	ns

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V, C_L = 50 pF (unless otherwise noted) (see Figures 9–14)

	ADAMETED	FROM	то	T,	ղ = 25°C	;	UP TO	85°C	UP TO	125°C	LINUT
_ F	PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
tPLH tPHL	Propagation delay time	COM or Yn	Yn or COM		11	14.5		16.5		18.5	ns
tPLH tPHL	Propagation delay time	Channel Select	COM or Yn		12.5	16.5		19		22	ns
tPZH tPZL	Enable delay time	INH	COM or Yn			85		95		105	ns
tPHZ tPLZ	Disable delay time	INH	COM or Yn			85		95		105	ns

SN74HC4851 8-CHANNEL ANALOG MULTIPLEXER/DEMULTIPLEXER WITH INJECTION-CURRENT EFFECT CONTROL SCLS542B - SEPTEMBER 2003 - REVISED JANUARY 2004

switching characteristics over recommended operating free-air temperature range, V_{CC} = 4.5 V, C_L = 50 pF (unless otherwise noted) (see Figures 9–14)

	ADAMETED	FROM	то	T	λ = 25°C	;	UP TO	85°C	UP TO	125°C	LINUT
"	ARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
tPLH tPHL	Propagation delay time	COM or Yn	Yn or COM		8.6	11.5		12.5		13.5	ns
tPLH tPHL	Propagation delay time	Channel Select	COM or Yn		10	13		15		17	ns
tPZH tPZL	Enable delay time	INH	COM or Yn			80		90		100	ns
tPHZ tPLZ	Disable delay time	INH	COM or Yn			80		90		100	ns

switching characteristics over recommended operating free-air temperature range, V_{CC} = 6 V, C_L = 50 pF (unless otherwise noted) (see Figures 9–14)

	ADAMETED	FROM	то	T,	չ = 25°C	;	UP TO	85°C	UP TO	125°C	LINUT
P.	ARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
tPLH tPHL	Propagation delay time	COM or Yn	Yn or COM		8	10		11		12	ns
tPLH tPHL	Propagation delay time	Channel Select	COM or Yn		9.5	12.5		14.5		16.5	ns
tPZH tPZL	Enable delay time	INH	COM or Yn			78		80		80	ns
tPHZ tPLZ	Disable delay time	INH	COM or Yn			78		80		80	ns

operating characteristics, $T_A = 25^{\circ}C$ (see Figure 15)

	PARAMETER	VCC	TEST CONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance	3.3 V	- No load	32	pF
		5 V		37	

APPLICATION INFORMATION

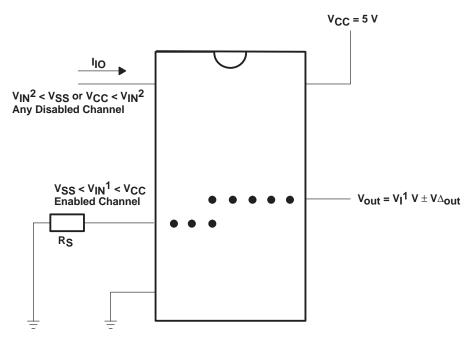


Figure 1. Injection-Current Coupling Specification

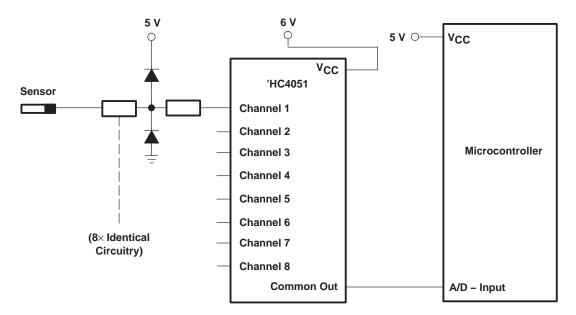


Figure 2. Alternate Solution Requires 32 Passive Components and One Extra 6-V Regulator to Suppress Injection Current Into a Standard 'HC4051 Multiplexer

APPLICATION INFORMATION

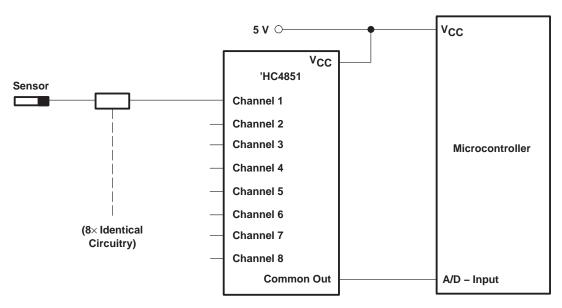


Figure 3. Solution by Applying the 'HC4851 Multiplexer

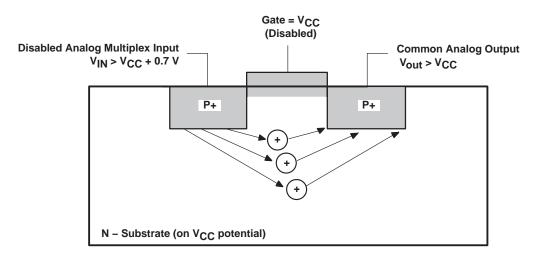


Figure 4. Diagram of Bipolar Coupling Mechanism (Appears if V_{IN} Exceeds V_{CC} , Driving Injection Current Into the Substrate)

PARAMETER MEASUREMENT INFORMATION

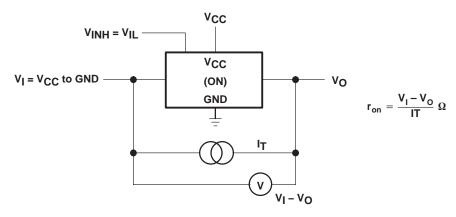


Figure 5. On-State-Resistance Test Circuit

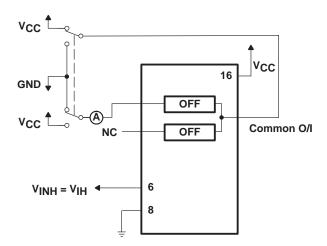


Figure 6. Maximum Off-Channel Leakage Current, Any One Channel, Test Setup

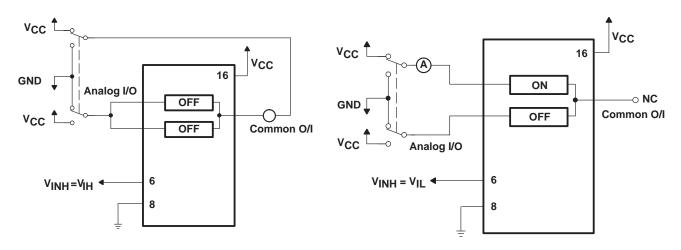


Figure 7. Maximum Off-Channel Leakage Current, Common Channel, Test Setup

Figure 8. Maximum On-Channel Leakage Current, Channel To Channel, Test Setup

PARAMETER MEASUREMENT INFORMATION

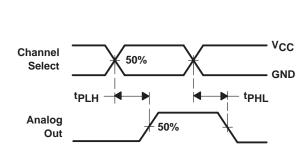


Figure 9. Propagation Delays, **Channel Select to Analog Out**

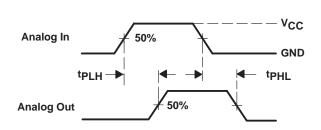


Figure 11. Propagation Delays, Analog In to Analog Out

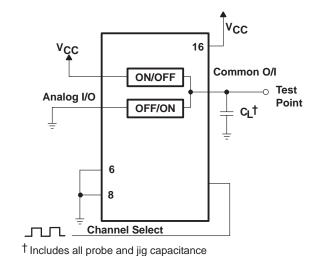
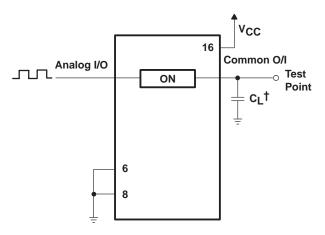



Figure 10. Propagation-Delay Test Setup, **Channel Select to Analog Out**

† Includes all probe and jig capacitance

Figure 12. Propagation-Delay Test Setup, Analog In to Analog Out

SCLS542B - SEPTEMBER 2003 - REVISED JANUARY 2004

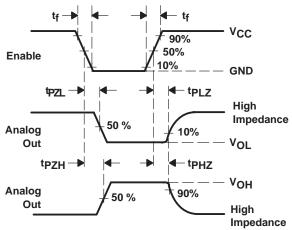
Position 1 when testing tpHz and tpzH Position 2 when testing tpLz and tpzL

16

10 $\mathbf{k}\Omega$

Test

Point


PARAMETER MEASUREMENT INFORMATION

1

2

① \(\bar{2} \)

V_CC ◀

Impedance

ON/OFF

CL

ON/OFF

CL

High
Impedance

Analog I/O

Figure 13. Propagation Delays, Enable to Analog Out

Figure 14. Propagation-Delay Test Setup, Enable to Analog Out

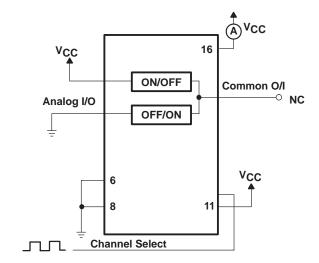
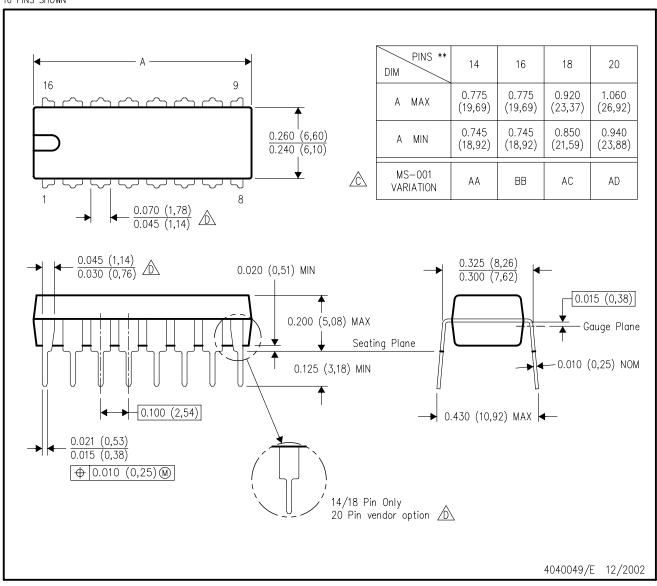
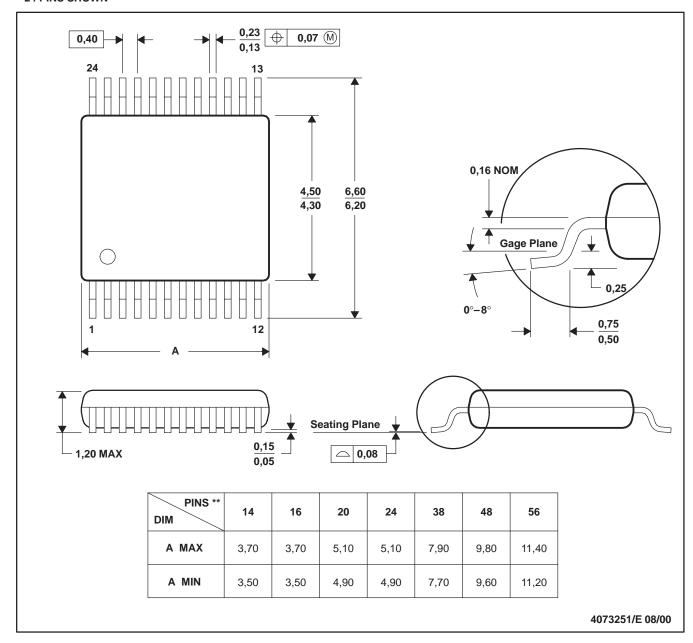



Figure 15. Power-Dissipation Capacitance Test Setup

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

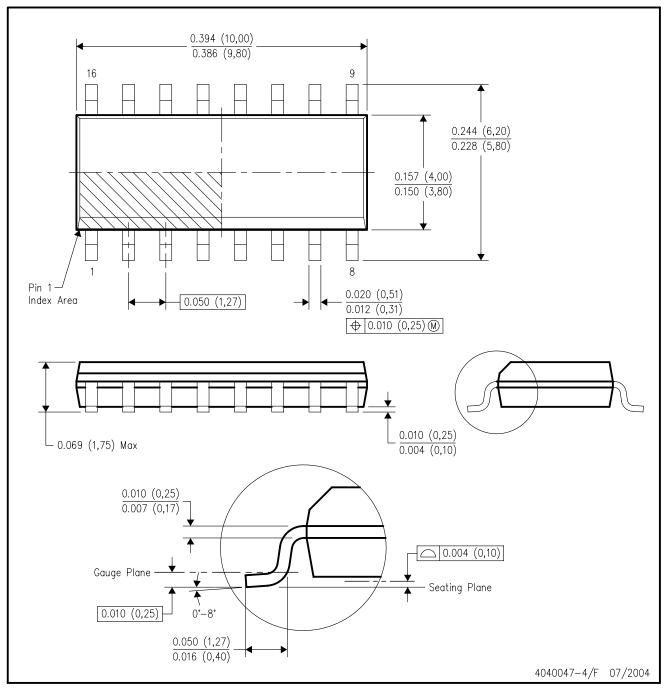

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

DGV (R-PDSO-G**)

24 PINS SHOWN

PLASTIC SMALL-OUTLINE

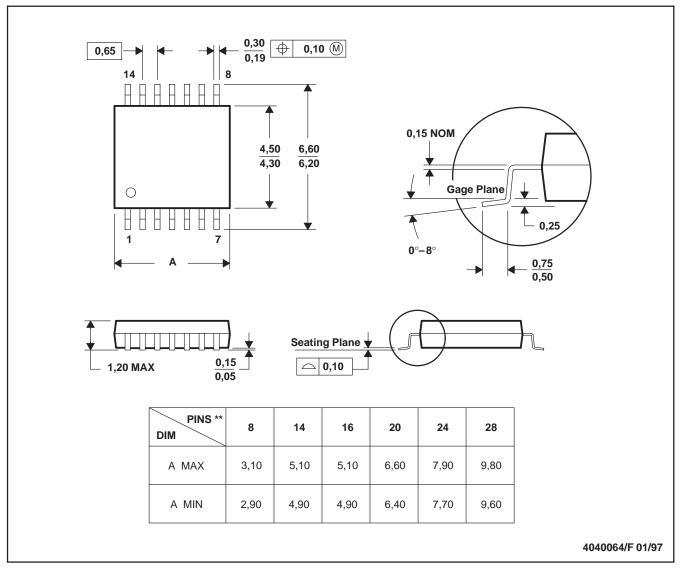

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153 14/16/20/56 Pins – MO-194

D (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AC.

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications		
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio	
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive	
DSP	dsp.ti.com	Broadband	www.ti.com/broadband	
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol	
Logic	logic.ti.com	Military	www.ti.com/military	
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork	
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security	
		Telephony	www.ti.com/telephony	
		Video & Imaging	www.ti.com/video	
		Wireless	www.ti.com/wireless	

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265