Unit: mm

TOSHIBA Insulated Gate Bipolar Transistor Silicon N Channel IGBT

GT20J321

High Power Switching Applications Fast Switching Applications

- Fourth-generation IGBT
- Enhancement mode type
- Fast switching (FS): Operating frequency up to 50 kHz (reference) High speed: $t_f = 0.04 \mu s$ (typ.)

Low switching loss : $E_{on} = 0.40 \text{ mJ (typ.)}$

 $: E_{off} = 0.43 \text{ mJ (typ.)}$

- Low saturation voltage: VCE (sat) = 2.0 V (typ.)
- FRD included between emitter and collector

Absolute Maximum Ratings (Ta = 25°C)

Characteristics		Symbol	Rating	Unit	
Collector-emitter voltage		V _{CES}	600	V	
Gate-emitter voltage		V_{GES}	±20	V	
Collector current	DC	IC	20	Α	
	1 ms	I _{CP}	40		
Emitter-collector forward current	DC	lF	20	Α	
	1 ms	I _{FM}	40		
Collector power dissipation (Tc = 25°C)		PC	45	W	
Junction temperature	Tj	150	°C		
Storage temperature range		T _{stg}	−55 to 150	°C	

Weight: 1.7 g (typ.)

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/Derating Concept and Methods) and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Thermal Characteristics

Characteristics	Symbol	Max	Unit
Thermal resistance (IGBT)	R _{th (j-c)}	2.78	°C/W
Thermal resistance (diode)	R _{th (j-c)}	4.23	°C/W

Equivalent Circuit

Marking

Electrical Characteristics (Ta = 25°C)

Cha	racteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage current		I _{GES}	V _{GE} = ±20 V, V _{CE} = 0	_	_	±500	nA
Collector cut-off	current	I _{CES}	V _{CE} = 600 V, V _{GE} = 0	_	_	1.0	mA
Gate-emitter cut	t-off voltage	V _{GE} (OFF)	I _C = 2 mA, V _{CE} = 5 V	3.5	_	6.5	V
Collector-emitter saturation voltage		V _{CE} (sat)	I _C = 20 A, V _{GE} = 15 V	_	2.0	2.45	٧
Input capacitance		C _{ies}	V _{CE} = 10 V, V _{GE} = 0, f = 1 MHz	_	3000	_	pF
Switching time	Turn-on delay time	t _{d (on)}	Inductive Load $V_{CC}=300 \text{ V, } I_{C}=20 \text{ A}$ $V_{GG}=+15 \text{ V, } R_{G}=33 \Omega$ (Note 1) (Note 2)	_	0.06	_	μs
	Rise time	t _r		_	0.04	_	
	Turn-on time	t _{on}		_	0.17	_	
	Turn-off delay time	^t d (off)		_	0.24	_	
	Fall time	t _f		_	0.04	_	
	Turn-off time	t _{off}		_	0.34	_	
Switching loss	Turn-on switching loss	E _{on}		_	0.40	_	- mJ
	Turn-off switching loss	E _{off}		_	0.43	_	
Peak forward vo	oltage	V _F	I _F = 20 A, V _{GE} = 0	_	_	2.1	٧
Reverse recovery time		t _{rr}	I _F = 20 A, di/dt = -100 A/μs	_	100	_	ns

Note 1: Switching time measurement circuit and input/output waveforms

Note 2: Switching loss measurement waveforms

