

September 1998

File Number

3605.5

Dual, 400MHz, Low Power, Video **Operational Amplifier**

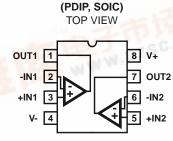
The HFA1205 is a dual, high speed, low power current feedback amplifier built with Intersil's proprietary complementary bipolar UHF-1 process.

These amplifiers deliver 400MHz bandwidth and 1275V/µs slew rate, on only 60mW of quiescent power. They are specifically designed to meet the performance, power, and cost requirements of high volume video applications. The excellent gain flatness and differential gain/phase performance make these amplifiers well suited for component or composite video applications. Video performance is maintained even when driving a back terminated cable ($R_L = 150\Omega$), and degrades only slightly when driving two back terminated cables ($R_{I} = 75\Omega$). RGB applications will benefit from the high slew rates, and high full power bandwidth.

The HFA1205 is a pin compatible, low power, high performance upgrade for the popular Intersil HA5023. For a dual amplifier with output disable capability, please see the HFA1245 datasheet.

Ordering Information

PART NUMBER (BRAND)	TEMP. RANGE (°C)	PACKAGE	PKG. NO.		
HFA1205IP	-40 to 85	8 Ld PDIP	E8.3		
HFA1205IB (H1205I)	-40 to 85	8 Ld SOIC	M8.15		
HA5023EVAL	High Speed Op Amp DIP Evaluation Board				


Features

Low Supply Current	5.8mA/Op Amp
High Input Impedance	2ΜΩ
• Wide -3dB Bandwidth (A _V = +2)	400MHz
Very Fast Slew Rate	1275V/μs
Gain Flatness (to 50MHz)	±0.03dB
Differential Gain	0.03%
Differential Phase	0.03 Degrees
• Pin Compatible Upgrade to HA5023	

Applications

- Flash A/D Drivers
- High Resolution Monitors
- · Video Switching and Routing
- Professional Video Processing
- · Video Digitizing Boards/Systems
- Multimedia Systems
- **RGB Preamps**
- Medical Imaging
- Hand Held and Miniaturized RF Equipment
- Battery Powered Communications
- High Speed Oscilloscopes and Analyzers

Pinout

HFA1205

Absolute Maximum Ratings

ESD Rating

Human Body Model (Per MIL-STD-883 Method 3015.7) 600V

Thermal Information

Thermal Resistance (Typical, Note 1)	θ_{JA} (°C/W)
PDIP Package	130
SOIC Package	
Maximum Junction Temperature (Die Only)	
Maximum Junction Temperature (Plastic Package)	150 ^o C
Maximum Storage Temperature Range65	^o C to 150 ^o C
Maximum Lead Temperature (Soldering 10s)	300°C
(SOIC - Lead Tips Only)	

Operating Conditions

Temperature Range -40°C to 85°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

- 1. $\theta_{\mbox{\scriptsize JA}}$ is measured with the component mounted on an evaluation PC board in free air.
- 2. Output is short circuit protected to ground. Brief short circuits to ground will not degrade reliability, however continuous (100% duty cycle) output current must not exceed 30mA for maximum reliability.

Electrical Specifications $V_{SUPPLY} = \pm 5V$, $A_V = +1$, $R_F = 560\Omega$, $R_L = 100\Omega$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	(NOTE 3) TEST LEVEL	TEMP. (°C)	MIN	TYP	MAX	UNITS
INPUT CHARACTERISTICS		'			!	ļ.	
Input Offset Voltage		А	25	-	2	5	mV
		Α	Full	-	3	8	mV
Average Input Offset Voltage Drift		В	Full	-	1	10	μV/°C
Input Offset Voltage	$\Delta V_{CM} = \pm 1.8V$	А	25	45	48	-	dB
Common-Mode Rejection Ratio	$\Delta V_{CM} = \pm 1.8V$	А	85	43	46	-	dB
	$\Delta V_{CM} = \pm 1.2V$	А	-40	43	46	-	dB
Input Offset Voltage	$\Delta V_{PS} = \pm 1.8V$	А	25	48	52	-	dB
Power Supply Rejection Ratio	$\Delta V_{PS} = \pm 1.8V$	А	85	46	50	-	dB
	$\Delta V_{PS} = \pm 1.2V$	А	-40	46	50	-	dB
Non-Inverting Input Bias Current		А	25	-	6	15	μА
		Α	Full	-	10	25	μА
Non-Inverting Input Bias Current Drift		В	Full	-	5	60	nA/ ^o C
Non-Inverting Input Bias Current	$\Delta V_{PS} = \pm 1.8V$	А	25	-	0.5	1	μΑ/V
Power Supply Sensitivity	$\Delta V_{PS} = \pm 1.8V$	А	85	-	0.8	3	μΑ/V
	$\Delta V_{PS} = \pm 1.2V$	А	-40	-	0.8	3	μΑ/V
Non-Inverting Input Resistance	$\Delta V_{CM} = \pm 1.8V$	А	25	0.8	2	-	MΩ
	$\Delta V_{CM} = \pm 1.8V$	А	85	0.5	1.3	-	MΩ
	$\Delta V_{CM} = \pm 1.2V$	А	-40	0.5	1.3	-	MΩ
Inverting Input Bias Current		А	25	-	2	8.5	μА
		Α	Full	-	5	15	μА
Inverting Input Bias Current Drift		В	Full	-	60	200	nA/ ^o C
Inverting Input Bias Current	$\Delta V_{CM} = \pm 1.8V$	А	25	-	3	6	μΑ/V
Common-Mode Sensitivity	$\Delta V_{CM} = \pm 1.8V$	А	85	-	4	8	μA/V
	$\Delta V_{CM} = \pm 1.2V$	А	-40	-	4	8	μΑ/V

Electrical Specifications $V_{SUPPLY} = \pm 5V$, $A_V = +1$, $R_F = 560\Omega$, $R_L = 100\Omega$, Unless Otherwise Specified (Continued)

TEST CONDITIONS	(NOTE 3) TEST LEVEL	TEMP. (°C)	MIN	TYP	MAX	UNITS
$\Delta V_{PS} = \pm 1.8V$	А	25	-	2	5	μA/V
$\Delta V_{PS} = \pm 1.8V$	А	85	-	4	8	μA/V
$\Delta V_{PS} = \pm 1.2V$	А	-40	-	4	8	μA/V
	С	25	-	60	-	Ω
	С	25	-	1.6	-	pF
	А	25, 85	±1.8	±2.4	-	V
	А	-40	±1.2	±1.7	-	V
f = 100kHz	В	25	-	3.5	-	nV/√Hz
f = 100kHz	В	25	-	2.5	-	pA/√Hz
f = 100kHz	В	25	-	20	-	pA/√Hz
A _V = -1	С	25	-	500	-	kΩ
, Unless Otherwise Specified	•					
$A_V = +1, +R_S = 432\Omega$	В	25	-	280	-	MHz
A _V = +2	В	25	-	400	-	MHz
$A_V = -1, R_F = 332\Omega$	В	25	-	360	-	MHz
$A_V = +1, R_S = 432\Omega$	В	25	-	140	-	MHz
A _V = +2	В	25	-	125	-	MHz
$A_V = -1, R_F = 332\Omega$	В	25	-	180	-	MHz
To 25MHz	В	25	-	±0.02	-	dB
To 50MHz	В	25	-	±0.03	-	dB
	А	Full	-	1	-	V/V
5MHz	В	25	-	-60	-	dB
10MHz	В	25	-	-54	-	dB
nless Otherwise Specified						
$A_V = -1, R_L = 100\Omega$	А	25	±3	±3.4	-	V
_	A	Full	±2.8	±3	-	V
$A_V = -1, R_I = 50\Omega$	A	25, 85	50	60	-	mA
_	A	-40	28	42	-	mA
	В	25	-	90	_	mA
DC, $A_V = +2$, $R_F = 464\Omega$	В	25	-	0.07	-	Ω
10MHz	В	25	-	-50	-	dBc
20MHz	В	25	-	-45	-	dBc
10MHz	В	25	-	-55	-	dBc
	В		-		-	dBc
				1 30		===
	1	25	_	0.8	_	ns
						ns
	$\Delta V_{PS} = \pm 1.8V$ $\Delta V_{PS} = \pm 1.8V$ $\Delta V_{PS} = \pm 1.2V$ $f = 100kHz$ $f = 100kHz$ $f = 100kHz$ $f = 100kHz$ $A_{V} = -1$ $A_{V} = -1$ $A_{V} = +1, +R_{S} = 432\Omega$ $A_{V} = +2$ $A_{V} = -1, R_{F} = 332\Omega$ $A_{V} = +2$ $A_{V} = -1, R_{F} = 332\Omega$ $To 25MHz$ $To 50MHz$ $SMHz$ $10MHz$ $10MHz$ $10MHz$ $DC, A_{V} = +2, R_{F} = 464\Omega$ $10MHz$ $20MHz$ $10MHz$ $20MHz$	TEST CONDITIONS LEVEL $\Delta V_{PS} = \pm 1.8V$ A $\Delta V_{PS} = \pm 1.8V$ A $\Delta V_{PS} = \pm 1.2V$ A C C A A F = 100kHz B f = 100kHz B AV = -1 C Q, Unless Otherwise Specified AV = +1, +RS = 432Ω B AV = +1, RF = 332Ω B AV = +1, RF = 332Ω B AV = +2 B AV = +1, RF = 332Ω B To 25MHz B To 50MHz B Indess Otherwise Specified AV = -1, RL = 100Ω A A A AV = -1, RL = 50Ω A A B DC, AV = +2, RF = 464Ω B 10MHz B 20MHz B RF = 464Ω, Unless Otherwise Specified Rise Time B	TEST CONDITIONS LEVEL (°C) $\Delta V_{PS} = \pm 1.8V$ A 25 $\Delta V_{PS} = \pm 1.8V$ A 85 $\Delta V_{PS} = \pm 1.2V$ A -40 C 25 C 25 A 25, 85 A -40 f = 100kHz B 25 Av = -1 C 25 c. Unless Otherwise Specified B 25 Av = +1, +R _S = 432Ω B 25 Av = +1, R _S = 432Ω B 25 Av = +1, R _S = 332Ω B 25 Av = -1, R _F = 332Ω B 25 To 25MHz B 25 To 50MHz B 25 Indess Otherwise Specified A Full Av = -1, R _L = 100Ω A 25 A Full A -40 B <	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c } \hline \textbf{TEST CONDITIONS} & \textbf{LEVEL} & \textbf{(°C)} & \textbf{MIN} & \textbf{TYP} & \textbf{MAX} \\ \hline \Delta V_{PS} = \pm 1.8V & A & 85 & - & 4 & 8 \\ \hline \Delta V_{PS} = \pm 1.2V & A & -40 & - & 4 & 8 \\ \hline & & & & & & & & & & & & & & & & & &$

Electrical Specifications $V_{SUPPLY} = \pm 5V$, $A_V = +1$, $R_F = 560\Omega$, $R_L = 100\Omega$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	(NOTE 3) TEST LEVEL	TEMP.	MIN	TYP	MAX	UNITS
Overshoot	$V_{OUT} = 0.5V_{P-P},$ $V_{IN} t_{RISE} = 2.5 ns$	В	25	-	5	-	%
Slew Rate	+SR	В	25	-	1050	-	V/μs
$(V_{OUT} = 4V_{P-P}, A_V = +1, +R_S = 432\Omega)$	-SR	В	25	-	750	-	V/µs
Slew Rate (V _{OUT} = 5V _{P-P} , A _V = +2)	+SR	В	25	-	1375	-	V/µs
	-SR	В	25	-	875	-	V/µs
Slew Rate	+SR	В	25	-	2250	-	V/µs
$(V_{OUT} = 5V_{P-P}, A_V = -1, R_F = 332\Omega)$	-SR	В	25	-	1275	-	V/µs
Settling Time (V _{OUT} = +2V to 0V step)	To 0.1%	В	25	-	15	-	ns
	To 0.05%	В	25	-	20	-	ns
	To 0.02%	В	25	-	30	-	ns
Overdrive Recovery Time	$V_{IN} = \pm 2V$	В	25	-	10	-	ns
VIDEO CHARACTERISTICS A _V = +2, R _F	= 464Ω, Unless Otherwise Specif	fied		ı			
Differential Gain (f = 3.58MHz)	$R_L = 150\Omega$	В	25	-	0.03	-	%
	$R_L = 75\Omega$	В	25	-	0.03	-	%
Differential Phase (f = 3.58MHz)	$R_L = 150\Omega$	В	25	-	0.03	-	Degrees
	$R_L = 75\Omega$	В	25	-	0.05	-	Degrees
POWER SUPPLY CHARACTERISTICS	-			I	1		
Power Supply Range		С	25	±4.5	-	±5.5	V
Power Supply Current		А	25	5.6	5.8	6.1	mA/ Op Amp
		А	Full	5.4	5.9	6.3	mA/ Op Amp

NOTE:

Application Information

Optimum Feedback Resistor

Although a current feedback amplifier's bandwidth dependency on closed loop gain isn't as severe as that of a voltage feedback amplifier, there can be an appreciable decrease in bandwidth at higher gains. This decrease may be minimized by taking advantage of the current feedback amplifier's unique relationship between bandwidth and $R_{\rm F}$. All current feedback amplifiers require a feedback resistor, even for unity gain applications, and $R_{\rm F}$, in conjunction with the internal compensation capacitor, sets the dominant pole of the frequency response. Thus, the amplifier's bandwidth is inversely proportional to $R_{\rm F}$. The HFA1205 design is optimized for a 464Ω $R_{\rm F}$ at a gain of +2. Decreasing $R_{\rm F}$ decreases stability, resulting in excessive peaking and overshoot (Note: Capacitive feedback will cause the same problems due to the feedback impedance decrease at higher frequencies). At

higher gains the amplifier is more stable, so R_{F} can be decreased in a trade-off of stability for bandwidth.

The table below lists recommended R_F values for various gains, and the expected bandwidth. For good channel-to-channel gain matching, it is recommended that all resistors (termination as well as gain setting) be $\pm 1\%$ tolerance or better. Note that a series input resistor, on +IN, is required for a gain of +1, to reduce gain peaking and increase stability.

GAIN (A _{CL})	R _F (Ω)	BANDWIDTH (MHz)
-1	332	360
+1	464 (+R _S = 432Ω)	280
+2	464	400

^{3.} Test Level: A. Production Tested.; B. Typical or Guaranteed Limit Based on Characterization.; C. Design Typical for Information Only.

Non-inverting Input Source Impedance

For best operation, the DC source impedance seen by the non-inverting input should be $\geq 50\Omega$. This is especially important in inverting gain configurations where the noninverting input would normally be connected directly to GND.

PC Board Layout

The frequency response of this amplifier depends greatly on the amount of care taken in designing the PC board. The use of low inductance components such as chip resistors and chip capacitors is strongly recommended, while a solid ground plane is a must!

Attention should be given to decoupling the power supplies. A large value ($10\mu F$) tantalum in parallel with a small value (0.1µF) chip capacitor works well in most cases.

Terminated microstrip signal lines are recommended at the input and output of the device. Capacitance directly on the output must be minimized, or isolated as discussed in the next section.

Care must also be taken to minimize the capacitance to ground seen by the amplifier's inverting input (-IN). The larger this capacitance, the worse the gain peaking, resulting in pulse overshoot and possible instability. To this end, it is recommended that the ground plane be removed under traces connected to -IN, and connections to -IN should be kept as short as possible.

Driving Capacitive Loads

Capacitive loads, such as an A/D input, or an improperly terminated transmission line will degrade the amplifier's phase margin resulting in frequency response peaking and possible oscillations. In most cases, the oscillation can be avoided by placing a resistor (R_S) in series with the output prior to the capacitance.

Figure 1 details starting points for the selection of this resistor. The points on the curve indicate the R_S and C_I combinations for the optimum bandwidth, stability, and settling time, but experimental fine tuning is recommended. Picking a point above or to the right of the curve yields an overdamped response, while points below or left of the curve indicate areas of underdamped performance.

 R_S and C_L form a low pass network at the output, thus limiting system bandwidth well below the amplifier bandwidth of 280MHz (for $A_V = +1$). By decreasing R_S as C₁ increases (as illustrated in the curves), the maximum bandwidth is obtained without sacrificing stability. In spite of this, bandwidth decreases as the load capacitance increases. For example, at $A_V = +1$, $R_S = 62\Omega$, $C_L = 40 pF$, the overall bandwidth is limited to 180MHz, and bandwidth drops to 70MHz at $A_V = +1$, $R_S = 8\Omega$, $C_L = 400pF$.

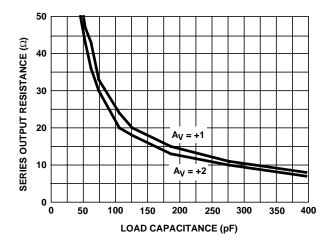
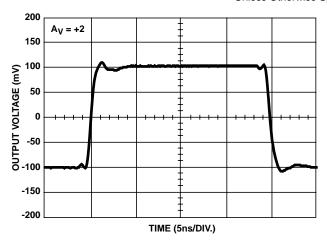
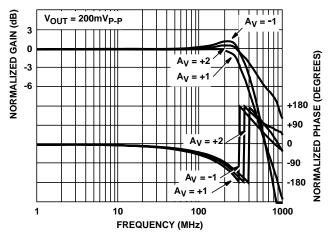



FIGURE 1. RECOMMENDED SERIES OUTPUT RESISTOR vs LOAD CAPACITANCE

Evaluation Board

The performance of the HFA1205 may be evaluated using the HA5023 Evaluation Board. The feedback and gain setting resistors must be replaced with the appropriate value (see "Optimum Feedback Resistor" section) for the gain being evaluated. Also, replace the two 0Ω series output resistors with 50Ω resistors.


To order evaluation boards (Part Number HA5023EVAL), please contact your local sales office.

2.0
A_V = +2
1.5
1.0
0.5
0.5
-1.0
-1.5
-2.0
TIME (5ns/DIV.)

FIGURE 2. SMALL SIGNAL PULSE RESPONSE

FIGURE 3. LARGE SIGNAL PULSE RESPONSE

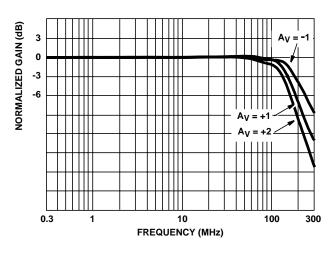
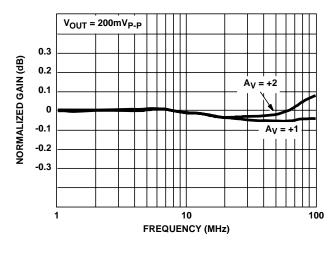



FIGURE 4. FREQUENCY RESPONSE

FIGURE 5. FULL POWER BANDWIDTH

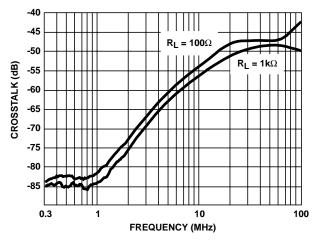


FIGURE 6. GAIN FLATNESS

FIGURE 7. CROSSTALK vs FREQUENCY

Die Characteristics

DIE DIMENSIONS:

69 mils x 92 mils x 19 mils 1750μm x 2330μm x 483μm

METALLIZATION:

Type: Metal 1: AlCu(2%)/TiW Thickness: Metal 1: 8kÅ ±0.4kÅ

Type: Metal 2: AICu(2%)

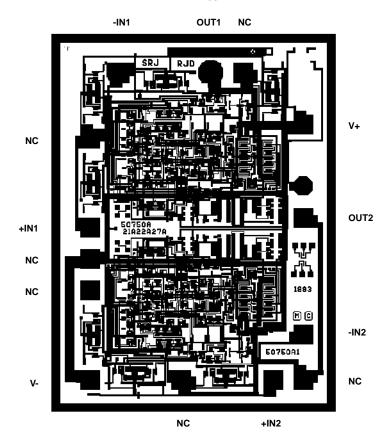
Thickness: Metal 2: 16kÅ ±0.8kÅ

SUBSTRATE POTENTIAL (Powered Up):

Floating (Recommend Connection to V-)

PASSIVATION:

Type: Nitride


Thickness: 4kÅ ±0.5kÅ

TRANSISTOR COUNT:

180

Metallization Mask Layout

HFA1205

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
