

Current Transducer HTY 50 .. 100-P

 $I_{PN} = 50 ... 100 A$

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data						
Primary nominar.m.s. current	Primary current measuring range I _P (A)	Туре				
50	± 150	HTY 50-P				
75	± 225	HTY 75-P				
100	± 300	HTY 100-P				
$egin{array}{l} oldsymbol{V}_{C} \ oldsymbol{I}_{C} \ oldsymbol{V}_{d} \ oldsymbol{R}_{IS} \ oldsymbol{V}_{OUT} \ oldsymbol{R}_{L} \end{array}$	Supply voltage (\pm 5 %)	± 15	V			
	Current consumption	<± 20	mA			
	R.m.s. voltage for AC isolation test, 50/60Hz, 1 mn	2.5	kV			
	Isolation resistance @ 500 VDC	> 500	MΩ			
	Output voltage @ \pm \mathbf{I}_{PN} , \mathbf{R}_{L} = 10 k Ω , \mathbf{T}_{A} = 25°C	± 4	V			
	Load resistance	>10	kΩ			

Accuracy-Dynamic performance data						
X	Accuracy @ I_{PN} , $T_A = 25$ °C (without offset)		< ± 1.0	% of I _{PN}		
\mathbf{e}_{\perp}	Linearity $(0 \pm I_{PN})$		< ± 1.0	% of I _{PN}		
V OE	Electrical offset voltage, $T_{A} = 25^{\circ}C$		$< \pm 30$	mV		
V _{OH}	Hysteresis offset voltage @ I _p = 0;					
OH	after an excursion of 1 x I _{DN}		< ± 15	mV		
V_{OT}	Thermal drift of V _{OF}	typ.	± 2.0	mV/K		
O1		max.	± 3.0	mV/K		
TCe _e	Thermal drift (% of reading)		$< \pm 0.1$	%/K		
t,	Response time @ 90% of Ip		< 7	μs		
f	Frequency bandwidth (- 3 dB)1)		DC 50	kHz		

General data						
T _A	Ambient operating temperature Ambient storage temperature	- 10 + 75 - 15 + 85	°C °C			
m s	Mass	< 30	g			

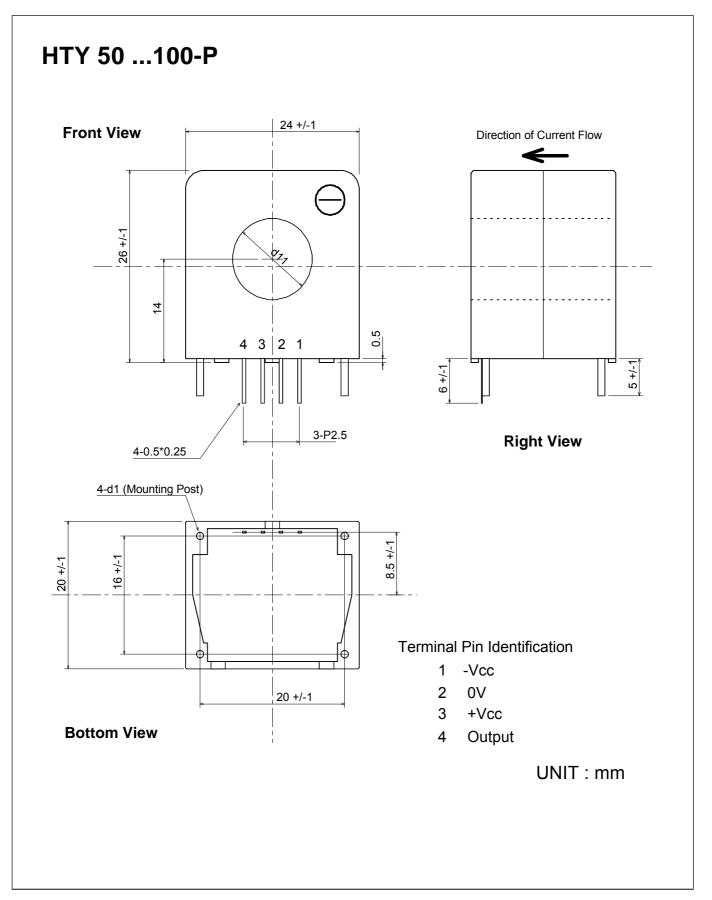
Notes: EN 50178 approval pending

Features

- Hall effect measuring principle
- Galvanic isolation between primary and secondary circuit
- Isolation voltage 2500 V~
- Low power consumption
- Extended measuring range(3 x I_{PN})

Advantages

- Easy mounting
- Small size and space saving
- Only one design for wide current ratings range
- High immunity to external interference.


Applications

- DC motor drives
- Switched Mode Power Supplies (SMPS)
- AC variable speed drives
- Uninterruptible Power Supplies (UPS)
- Battery supplied applications
- Inverters

¹⁾ Derating is needed to avoid excessive core heating at high frequency.

