ADVANCED POWER TECHNOLOGY®

APT50M75JFLL

500V 52A 0.075 Ω

POWER MOS 7™

FREDFET

Power MOS 7^{TM} is a new generation of low loss, high voltage, N-Channel enhancement mode power MOSFETS. Both conduction and switching losses are addressed with Power MOS 7^{TM} by significantly lowering $R_{\text{DS(ON)}}$ and Q_g . Power MOS 7^{TM} combines lower conduction and switching losses along with exceptionally fast switching speeds inherent with APT's patented metal gate structure.

- Lower Input Capacitance
- Lower Miller Capacitance
- Lower Gate Charge, Qg
- Increased Power Dissipation
- Easier To Drive
- Popular SOT-227 Package
- FAST RECOVERY BODY DIODE

MAXIMUM RATINGS

All Ratings: $T_C = 25^{\circ}$ C unless otherwise specified.

Symbol	Parameter	APT50M75JFLL	UNIT	
V _{DSS}	Drain-Source Voltage	500	Volts	
I _D	Continuous Drain Current @ T _C = 25°C	52	Amne	
I _{DM}	Pulsed Drain Current ①	208	Amps	
V _{GS}	Gate-Source Voltage Continuous	±30	Valta	
V _{GSM}	Gate-Source Voltage Transient	±40G	Volts	
P _D	Total Power Dissipation @ T _C = 25°C	480	Watts	
, D	Linear Derating Factor	3.84	W/°C	
T _J ,T _{STG}	Operating and Storage Junction Temperature Range	-55 to 150	°C	
T _L	Lead Temperature: 0.063" from Case for 10 Sec.	300		
I _{AR}	Avalanche Current (Repetitive and Non-Repetitive)	52	Amps	
E _{AR}	Repetitive Avalanche Energy ①	50	m	
E _{AS}	Single Pulse Avalanche Energy ⁴	2500	mJ	

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT
BV _{DSS}	Drain-Source Breakdown Voltage (V _{GS} = 0V, I _D = 250μA)	500			Volts
I _{D(on)}	On State Drain Current ② $(V_{DS} > I_{D(on)} \times R_{DS(on)} Max, V_{GS} = 10V)$	52			Amps
R _{DS(on)}	Drain-Source On-State Resistance ② (V _{GS} = 10V, 0.5 I _{D[Cont.]})			0.075	Ohms
I _{DSS}	Zero Gate Voltage Drain Current (V _{DS} = V _{DSS} , V _{GS} = 0V)			250	μА
	Zero Gate Voltage Drain Current ($V_{DS} = 0.8 V_{DSS}$, $V_{GS} = 0V$, $T_{C} = 125$ °C)			1000	
I _{GSS}	Gate-Source Leakage Current $(V_{GS} = \pm 30V, V_{DS} = 0V)$			±100	nA
V _{GS(th)}	Gate Threshold Voltage $(V_{DS} = V_{GS}, I_{D} = 2.5 \text{mA})$	3		5	Volts

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

APT Website - http://www.advancedpower.com

USA

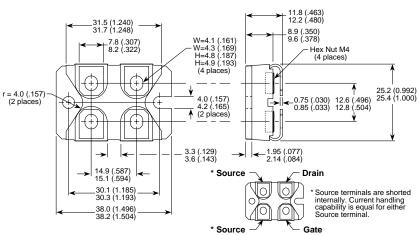
DYNAMIC CHARACTERISTICS

APT50M75JFLL

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
C _{iss}	Input Capacitance	V _{GS} = 0V		5400		
C _{oss}	Output Capacitance	$V_{DS} = 25V$		1040		pF
C _{rss}	Reverse Transfer Capacitance	f = 1 MHz		95		
Qg	Total Gate Charge ^③	V _{GS} = 10V		145		
Q_{gs}	Gate-Source Charge	$V_{DD} = 0.5 V_{DSS}$		30		nC
Q_{gd}	Gate-Drain ("Miller") Charge	I _D = I _D [Cont.] @ 25°C		70		
t _d (on)	Turn-on Delay Time	V _{GS} = 15V		11		
t _r	Rise Time	$V_{DD} = 0.5 V_{DSS}$		12		ns
t _d (off)	Turn-off Delay Time	$I_D = I_D [Cont.] @ 25°C$		30		115
t _f	Fall Time	$R_G = 0.6\Omega$		6		

SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS

Symbol	Characteristic / Test Conditions		MIN	TYP	MAX	UNIT
I _S	Continuous Source Current (Body Diode)				52	A
I _{SM}	Pulsed Source Current (Body Diode)				208	Amps
V _{SD}	Diode Forward Voltage (V _{GS} = 0V, I _S = -I _D [Cont.])				1.3	Volts
dv/ _{dt}	Peak Diode Recovery dv/dt (5)				5	V/ns
	Reverse Recovery Time	T _j = 25°C			250	no
t _{rr}	$(I_S = -I_D [Cont.], \frac{di}{dt} = 100A/\mu s)$	T _j = 125°C			500	ns
	Reverse Recovery Charge	T _j = 25°C		1.6		
Q_{rr}	$(I_S = -I_D [Cont.], \frac{di}{dt} = 100A/\mu s)$	T _j = 125°C		5.5		μC
I _{RRM}	Peak Recovery Current	T _j = 25°C		15		A
	$(I_S = -I_D [Cont.], di/_{dt} = 100A/\mu s)$	T _j = 125°C		27		Amps


THERMAL CHARACTERISTICS

Symbol	Characteristic	MIN	TYP	MAX	UNIT
$R_{ heta JC}$	Junction to Case			0.26	
$R_{\theta JA}$	Junction to Ambient			40	°C/W

① Repetitive Rating: Pulse width limited by maximum junction temperature.

APT Reserves the right to change, without notice, the specifications and information contained herein.

SOT-227 (ISOTOP®) Package Outline

Dimensions in Millimeters and (Inches)

³ See MIL-STD-750 Method 3471

⁴ Starting $T_i = +25$ °C, L = 1.85mH, $R_G = 25\Omega$, Peak $I_L = 52$ A

② Pulse Test: Pulse width < 380 μS, Duty Cycle < 2%