MITSUBISHI < Dig./Ana.INTERFACE>

M62015L,FP M62016L,FP

LOW POWER 2 OUTPUT SYSTEM RESET IC

DESCRIPTION

The M62015, M62016 are semiconductor integrated circuits whose optimum use is for the detection of the rise and fall in the power supply to a microcomputer system in order to reset or release the microcomputer system.

The M62015, M62016 carry out voltage detection in 2 steps and have 2 output pins. As Bi-CMOS process and low power dissipating circuits are employed, they output optimum signals through each output pin to a system that requires RAM backup.

These ICs also support the backup mode of Mitsubishi microcomputer the M16C.

FEATURES

 Bi-CMOS process realizes a configuration of low current dissipating circuits.

Circuit current

Icc=3µA (Typ., normal mode, Vcc=3.0V) Icc=1µA (Typ., backup mode, Vcc=2.5V)

Two-step detection of supply voltage
 Detection voltage in normal mode Vs=2.7V (Typ.)
 Detection voltage in backup mode VBATT=2.0V (Typ.)

• Two outputs

Reset output (RESET) : Output of compulsive reset signal Interruption output (INT) : Output of interruption signal

Output forms

CMOS output: M62015 Open drain: M62016

APPLICATION

Prevention of malfunction of microcomputer systems in electronic, equipment such as OA equipment, industrial equipment, and homeuse electronic appliances.

MITSUBISHI < Dig./Ana.INTERFACE> M62015L,FP / M62016L,FP

LOW POWER 2 OUTPUT SYSTEM RESET IC

ABSOLUTE MAXIMUM RATINGS (Ta=25°C, unless otherwise noted.)

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		8	V
Isink	Output sink voltage		4	mA
Pd	Power dissipation		440	mW
Kθ	Thermal derating	(Ta 25°C)	4.4	mW/ °C
Topr	Operating temperature		-20 to +75	°C
Tstg	Storage temperature		-40 to +125	°C

ELECTRICAL CHARACTERISTICS (Ta=25°C, unless otherwise noted.)

Symbol	Parameter	Test Conditions	Limits			Unit
			Min	Тур	Max	Offic
Vs	Supply voltage	Interruption level during Vcc drop	2.55	2.70	2.85	V
VBATT	Battery voltage	Reset level at backup	1.85	2.00	2.15	V
Vs	Hysteresis voltage	Vs=VsH-VsH		60		mV
Icc	Circuit current	Vcc=3.0V : In normal mode		3.0	12	μA
		Vcc=2.5V : In backup mode		1.0	4.0	μA
Vsat	Sink ability	VCC=2.5V, Isink=2mA		0.4	0.6	V
td	Delay time	External capacitance Cd=0.33µF		50		ms
t RESET	Reset output response time	When Vcc falling		50		μs
tin⊤	Interruption output response time	When Vcc falling		40		μs

APPLICATION EXAMPLE

*: A pull-up resistor is required only in the case of open-drain output.

MITSUBISHI < Dig./Ana.INTERFACE> M62015L,FP / M62016L,FP

LOW POWER 2 OUTPUT SYSTEM RESET IC

OPERATION DESCRIPTION

- \bigcirc . If VCC rises to VSH(2.76V), the $\overline{\text{INT}}$ output is set to high level.
- ③ . If Vcc drops to VsH (2.70V), INT goes low.

 **RESET output continues to be held high.
- 4 . If VCC returns to VSH, the INT output is set to high level.

- 5). Same as (3)
- 6. If Vcc becomes lower than VBATT (2.00V), the RESET output is set to low thereby resetting the microcomputer and initializing system.
- 7). Same as (1)
- 8 . Same as (2)
- 9 . Same as 3 and 5
- (10). Same as (6)