

Description

The MK2771-16 is a low cost, low jitter, high performance VCXO and clock synthesizer designed for set-top boxes. The on-chip Voltage Controlled Crystal Oscillator accepts a 0 to 3V input voltage to cause the output clocks to vary by ±100 ppm. Using ICS/MicroClock's patented VCXO and analog Phase-Locked Loop (PLL) techniques, the device uses an inexpensive 13.5 MHz crystal input to produce multiple output clocks including a selectable processor clock, a selectable audio clock, two communications clocks, a 13.5 MHz clock, and three 27 MHz clocks. All clocks are frequency locked to the 27.00MHz output (and to each other) with zero ppm error, so any output can be used as the VCXO output.

Features

- Packaged in 28 pin SSOP (QSOP)
- On-chip patented VCXO with pull range of 200ppm (minimum)
- VCXO tuning voltage of 0 to 3V
- Processor frequency include 16.66, 20, 25, 32, 40, and 50 MHz
- Audio clocks support 32 kHz, 44.1 kHz, 48 kHz and 96 kHz sampling rates
- Zero ppm synthesis error in all clocks (all exactly track 27MHz VCXO)
- Uses an inexpensive 13.5 MHz crystal
- Full CMOS output swings with 25mA output drive capability at TTL levels
- Advanced, low power, sub-micron CMOS process
- 5V operating voltage with 3.3V capable I/O

Pin Assignment

			I
PS0 E	10	28	□ AS1
X2 [2	27	□ AS0
GND [3	26	CS0
X1 [4	25	□ 27M
VDD5	5	24	GND
VIN [6	23	□ 27M
VDDIO [7	22	□ VDD5
VDD5	8	21	□ AS2
CS1	9	20	GND
GND [10	19	GND
GND [11	18	□ 27M
PCLK [12	17	CCLK1
CCLK2	13	16	□ PS1
ACLK [14	15	□ 13.5M
			l

 $VDD5=5V\pm10\%$ VDDIO=3.3V±10% VIN=0 to 3.0V (3.3V OK)

Audio Clock (MHz)

AS2	AS1	AS0	ACLK
0	0	0	8.192
0	0	1	11.2896
0	1	0	12.288
0	1	1	5.6448
1	0	0	18.432
1	0	1	16.9344
1	1	0	49.152
1	1	1	24.576

0 = connect directly to GND M = leave unconnected (floating) 1 = connect directly to VDDIO

Communications Clocks (MHz)

CS1	CS0	CCLK1	CCLK2
0	0	Low	33.333
0	1	Low	24.576
1	0	11.0592	18.432
1	1	11.0592	3.6864

Processor Clock (MHz)

PS1	PS0	PCLK
0	0	50
0	1	16.667
M	0	25
M	1	32
1	0	40
1	1	20

Number	Name	Туре	Description	
1	PS0	I	Processor Clock Select 0. Selects PCLK frequency. See table above. Internal pull-up.	
2	X2	XO	Crystal connection. Connect to a pullable 13.5 MHz crystal.	
3, 10, 11	GND	P	Connect to ground.	
4	X1	XI	Crystal connection. Connect to a pullable 13.5 MHz crystal.	
5, 8, 22	VDD5	P	Connect to +5V.	
6	VIN	I	Voltage Input to VCXO. Zero to 3V signal which controls the frequency of the VCXO.	
7	VDDIO	P	Connect to +3.3V or +5V. Amplitude of inputs and outputs will match this.	
9	CS1	I	Communications clock select pin 1 . Selects CCLK 1 and 2 per table above. Internal pull-up.	
12	PCLK	О	Processor Clock output. Determined by status of PS1, PS0.	
13	CCLK2	О	Communications Clock output 2 determined by status of CS1,CS0 per table above.	
14	ACLK	0	Audio Clock Output. Determined by status of AS2:0 per table above.	
15	13.5M	O	13.50 MHz VCXO clock output.	
16	PS1	TI	Processor Clock Select 1. Selects PCLK frequency. See table above. Self-biased to M.	
17	CCLK1	0	Communications Clock output 1 determined by status of CS1, CS0 per table above.	
18, 23, 25	27M	О	27.00 MHz VCXO clock output.	
19, 20, 24	GND	P	Connect to ground.	
21	AS2	I	Audio Clock Select 2. Selects ACLK on pin 14 per table above. Internal pull-up.	
26	CS0	I	Communications clocks select pin 0. Selects CCLK1 and 2 per table above. Internal pull-up.	
27	AS0	I	Audio Clock Select 0. Selects ACLK on pin 14. See table above. Internal pull-up.	
28	AS1	I	Audio Clock Select 1. Selects ACLK on pin 14. See table above. Internal pull-up.	

Key: I = Input; TI = Tri-level input; O = output; P = power supply connection; XI, XO = crystal connections

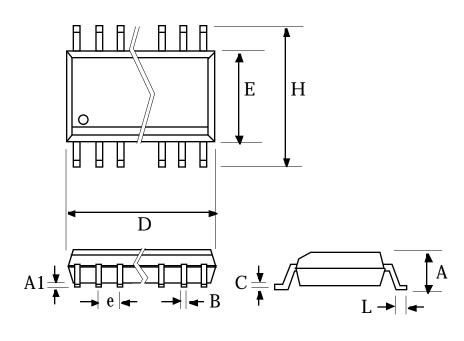
MDS 2771-16 C Revision 102099 Printed 11/16/00 Integrated Circuit Systems, Inc. • 525 Race Street • San Jose • CA •95126•(408) 295-9800tel• www.icst.com

Electrical Specifications

Parameter	Conditions	Minimum	Typical	Maximum	Units		
ABSOLUTE MAXIMUM RATINGS (note 1)							
Supply voltage, VDD	Referenced to GND			7	V		
Inputs and Clock Outputs	Referenced to GND	-0.5		VDD+0.5	V		
Ambient Operating Temperature		0		70	°C		
Soldering Temperature	Max of 10 seconds			260	°C		
Storage temperature		-65		150	°C		
DC CHARACTERISTICS (VDD = 5	.0V unless noted)						
Operating Voltage, VDD		4.75		5.25	V		
Operating Voltage, VDDIO	for all inputs/outputs	3.00		5.25	V		
Input High Voltage, VIH, X1 pin only		3.5	2.5		V		
Input Low Voltage, VIL, X1 pin only			2.5	1.5	V		
Input High Voltage, VIH (except PS1)		2			V		
Input Low Voltage, VIL (except PS1)				0.8	V		
Input High Voltage, VIH, PS1 only		VDD-0.5			V		
Input Low Voltage, VIL, PS1 only				0.5	V		
Output High Voltage, VOH	IOH=-25mA	2.4			V		
Output Low Voltage, VOL	IOL=25mA			0.4	V		
Output High Voltage, VOH, CMOS level	IOH=-8mA	VDD-0.4			V		
Operating Supply Current, IDD5	No Load, note 2		42		mA		
Operating Supply Current, IDDIO	No Load, VDDIO=3.3V		19		mA		
Short Circuit Current	Each output		±100		mA		
Input Capacitance			7		pF		
Frequency synthesis error	All clocks			0	ppm		
VIN, VCXO control voltage		0		3	V		
AC CHARACTERISTICS (VDD = 5.	.0V unless noted)						
Input Frequency			13.500000		MHz		
Output Clock Rise Time	0.8 to 2.0V			1.5	ns		
Output Clock Fall Time	2.0 to 0.8V			1.5	ns		
Output Clock Duty Cycle	At 1.4V	40		60	%		
Maximum Absolute Jitter, short term			300		ps		
27 MHz output pullability, note 3	0V VIN 3V	±100	±140		ppm		

Notes:

- 1. Stresses beyond those listed under Absolute Maximum Ratings could cause permanent damage to the device. Prolonged exposure to levels above the operating limits but below the Absolute Maximums may affect device reliability.
- 2. With all clocks at highest MHz.
- 3. With a pullable crystal that conforms to ICS' specifications:


 $\begin{array}{lll} \text{Correlation (load) capacitance} & 14 \text{ pF} \\ \text{C0/C1} & 240 \text{ maximum} \\ \text{ESR} & 25 \text{ maximum} \\ \text{Initial Accuracy} & \pm 20 \text{ ppm} \\ \text{Aging and Temp stability} & \pm 50 \text{ ppm} \\ \text{Operating Temperature} & 0 \text{ to } 70^{\circ}\text{C} \end{array}$

External Components

The MK2771-16 requires a minimum number of external components for proper operation. Use a low inductance ground plane, connect all GNDs to this. Connect $0.01\mu F$ decoupling caps on pins 5, 7, 8 and 22 directly to the ground plane, as close to the MK2771-16 as possible. A series termination resistor of 33 may be used for each clock output. The 13.500 MHz crystal must be connected as close to the chip as possible. The crystal should be a parallel mode, pullable, with load capacitance of 14pF. Consult ICS/MicroClock full specifications. Please obey Application Note MAN05 for pullable crystal layout info except for the following: the MK2771-16 introduces a GND pin (pin #3) between the pullable crystal pins. This ground should be brought in straight from the right side underneath the device.

Package Outline and Package Dimensions

(For current dimensional specifications, see JEDEC Publication No. 95.)

28 pin SSOP

	Inches		Millin	neters
Symbol	Min	Max	Min	Max
Α	0.053	0.069	1.35	1.75
A1	0.004	0.010	0.102	0.254
В	0.008	0.012	0.203	0.305
С	0.007	0.010	0.191	0.254
D	0.386	0.394	9.804	10.008
E	0.150	0.157	3.810	3.988
e	.025 BSC		0.635 BSC	
Н	0.228	0.244	5.791	6.198
L	0.016	0.050	0.406	1.270

Ordering Information

Part/Order Number	Marking	Shipping packaging	Package	Temperature
MK2771-16R	MK2771-16R	tubes	28 pin SSOP (QSOP)	0-70 °C
MK2771-16RTR	MK2771-16R	tape and reel	28 pin SSOP (QSOP)	0-70 °C

While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems (ICS) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.