High Speed GaAlAs Infrared Emitter

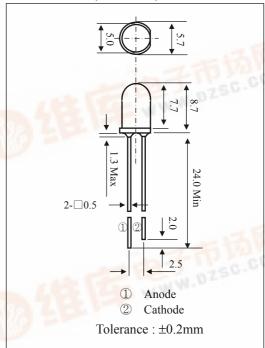
OPE5685

The **OPE5685** is GaAlAs infrared emitting diode that is designed for high power, low forward voltage and high speed rise / fall time.

This device is optimized for speed and efficiency at emission wavelength 850nm and has a high radiant efficiency over a wide range of forward current. This device is packaged T1-3/4 plastic package and has wide beam angle with lensed package and cup frame. Especially this device is suited as the emitter of data transmission without cable.

FEATURES

- High speed: 25ns rise time
- 850nm wavelength
- Wide beam angle
- Low forward voltage
- High power and high reliability
- Available for pulse operating


APPLICATIONS

- Emitter of IrDA
- IR Audio and Telephone
- High speed IR communication
- IR LANs
- Available for wireless digital data transmission

STORAGE

- Condition: 5°C~35°C,R.H.60%
- Terms: within 3 months from production date
- Remark : Once the package is opened, the products should be used within a day. Otherwise, it should be keeping in a damp proof box with desiccants.
- * Please take proper steps in order to secure reliability and safety in required conditions and environments for this device.

DIMENSIONS (Unit: mm)

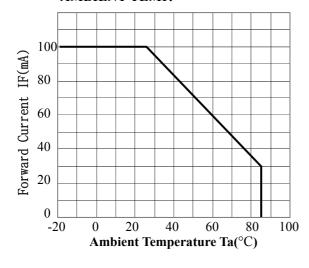
MAXIMUM RATINGS

 $(Ta=25^{\circ}C)$

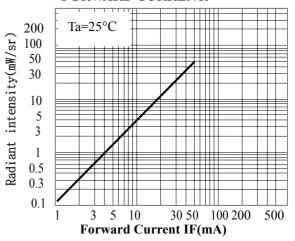
Item	Symbol Rating		Unit	
Power Dissipation	P_{D}	150	MW	
Forward current	I_{F}	100	MA	
Pulse forward current	I_{FP}	1.0	A	
Reverse voltage	V_R	4.0	V	
Operating temp.	Topr.	-25~ +85	°C	
Soldering temp. *2	Tsol.	260.	°C	

^{*1.} Duty ratio = 1/100, pulse width=0.1 ms.

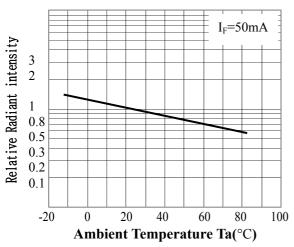
ELECTRO-OPTICAL CHARACTERISTICS

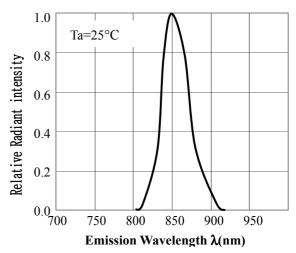

(Ta=25°C)

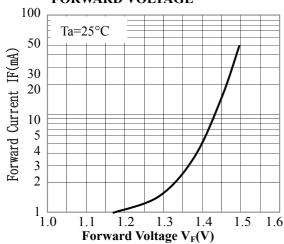
Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Forward voltage	$V_{\rm F}$	I _F =50mA		1.5	2.0	V
Reverse current	I_R	$V_R=4V$			10	μA
Capacitance	Ct	f=1MHz		20		pF
Radiant intensity	Ie	I _F =50mA		50		mW/sr
Peak emission wavelength	λр	I _F =50mA		850		nm
Spectral bandwidth 50%	Δλ	I _F =50mA		45		nm
Half angle	Δθ	I _F =50mA		±22		deg.
Optical rise & fall time(10%~90%)	tr/tf	I _F =50mA		25/13		ns
Cut off frequency *3	fc	I _F =50mA DC +10mA p-p		14		MHz

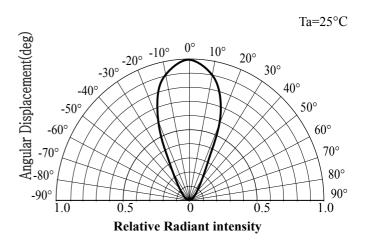

3. 10logPo(fc MHz)/Po(0.1 MHz)=-3

^{*2.}Lead Soldering Temperature (2mm from case for 5sec.).


• FORWARD CURRENT Vs. AMBIENT TEMP.


 RADIANT INTENSITY Vs. FORWARD CURRENT.


• RELATIVE RADIANT INTENSITY Vs. AMBIENT TEMP.


• RELATIVE RADIANT INTENSITY Vs. EMISSION WAVELENGTH.

• FORWARD CURRENT Vs. FORWARD VOLTAGE

• ANGULAR DISPLACEMENT Vs RELATIVE RADIANT INTENSITY

