

PI3VT3245

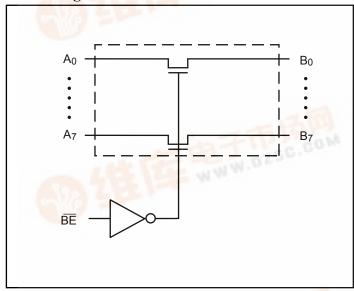
8-Bit, 2-Port, Low Voltage Translator Bus Switch

Features

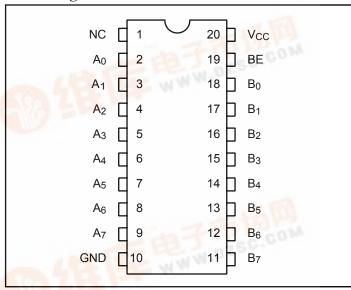
- Near-Zero propagation delay
- Low On-Resistance switches connect inputs to outputs
- 2.5V to 3.3V Supply voltage operation
- 2.5V or 1.8V switching
- Packaging (Pb-free & Green available):
 - 20-pin, 150-mil wide plastic QSOP (Q)
 - 20-pin, 173-mil wide plastic TSSOP (L)

Applications

- 3.3V to 2.5V level shifting (voltage translation)
- 2.5V to 1.8V level shifting (voltage translation)


Description

Pericom Semiconductor's PI3VT series of logic circuits are produced using the Company's advanced submicron CMOS technology, achieving industry leading performance.


The PI3VT3245 is a 2.5V or 3.3V 8-bit, 2-port bus switch designed with a low On-Resistance (5Ω). The switches are turned ON or enabled by the Bus Enable (\overline{BE}) input signal.

Given a 3.3V supply and an input voltage of 3.3V, the switch translates to an output voltage of 2.5V. Similarly, when operated with a 2.5V supply and given 2.5V inputs, the device translates the outputs to 1.8V.

Block Diagram

Pin Configuration

Truth Table⁽¹⁾

	11 01011 100010					
Function	BE	A0-7				
Disconnect	Н	Hi-Z				
Connect	L	B0-7				

Notes:

H = High Voltage Level
L = Low Voltage Level
High Impedance

df.dzsc.com

Pin Description

in a court prom			
Pin Name	Description		
$\overline{\mathrm{BE}}$	Bus Enable Input (Active Low)		
A ₀ -A ₇	Bus A		
B ₀ -B ₇	Bus B		
V _{CC}	Power		
GND	Ground		

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	-65°C to +150°C
Ambient Temperature with Power Applied	40°C to +85°C
Supply Voltage to Ground Potential	0.5V to +4.6V
DC Input Voltage	0.5V to +5.5V
DC Output Current	120mA
Power Dissipation	0.5W

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics (Over Operating Range, $T_A = -40$ °C to +85°C, $V_{CC} = 3.3V \pm 10$ %)

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Typ.(2)	Max.	Units
V_{IH}	Input HIGH Voltage	Guaranteed logic HIGH level	2.0		V _{CC} +0.3V	V
$V_{\rm IL}$	Input LOW Voltage	Guaranteed logic LOW level	-0.5		0.8	V
I_{IH}	Input HIGH Current	$V_{CC} = Max., V_{IN} = V_{CC}$			±1	
I_{IL}	Input LOW Current	$V_{CC} = Max., V_{IN} = GND$			±1	μA
I _{OZH}	High Impedance Output Current	$0 \le A, B \le V_{CC}$			±1	μπ
		$V_{CC} = Min$, $V_{IN} = 0V$, $I_{ON} = -8mA$		5	8	
R _{ON} Switch On-Resistance	$V_{CC} = Min., V_{IN} = 1.7V, I_{ON} = -8mA$		15	22	Ω	
	$V_{CC} = 2.3V., V_{IN} = 0V, I_{ON} = -8mA$		6	9	22	
		$V_{CC} = 2.3V., V_{IN} = 1.3V, I_{ON} = -8mA$		25	30	
X 7	Dags Voltage	$V_{IN} = V_{CC} = 3.3V$, $I_{OUT} = -5\mu A$	2.3	2.5	2.9	V
Vp	Pass Voltage	$V_{IN} = V_{CC} = 2.5V$, $I_{OUT} = -5\mu A$		1.8		V

Capacitance $(T_A = 25^{\circ}C, f = 1 \text{ MHz})$

Parameters ⁽⁵⁾	Description	Test Conditions	Тур.	Units
C_{IN}	Input Capacitance	3.5		
C _{OFF}	A/B Capacitance, Switch Off $V_{IN} = 0V$ 5.0		pF	
C _{ON}	A/B Capacitance, Switch On	11.2		

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at $V_{CC} = 3.3V$, $T_A = 25$ °C ambient and maximum loading.
- 3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
- 4. Measured by the voltage drop between A and B pin at indicated current through the switch. On-Resistance is determined by the lower of the voltages on the two (A,B) pins.
- 5. This parameter is determined by device characterization but is not production tested.

Power Supply Characteristics

Parameters	Description	Test (Conditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units
I_{CC}	Quiescent Power Supply Current	V Mov	$V_{IN} = GND \text{ or } V_{CC}$			3	4
ΔI_{CC}	Quiescent Current per Input HIGH	$V_{CC} = Max.$	$V_{\rm IN} = 3V^{(3)}$			50	μΑ

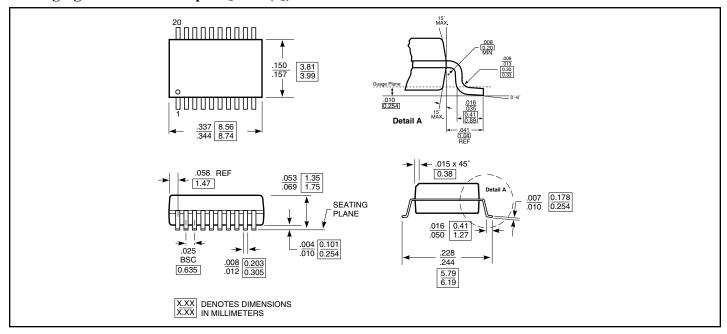
Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.
- 2. Typical values are at $V_{CC} = 3.3V$, $+25^{\circ}C$ ambient.
- 3. Per driven input (control input only); A and B pins do not contribute to ΔI_{CC} .

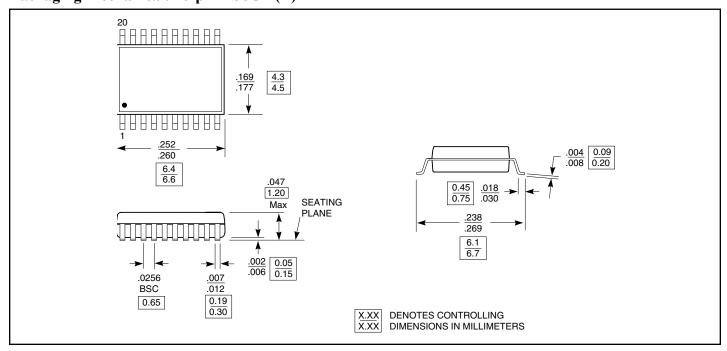
Switching Characteristics over 3.3V ±0.3V Operating Range

Powemeters Description		Conditions ⁽¹⁾	Com.		IImita
Parameters	Description	Conditions	Min.	Max.	Units
t _{PLH} t _{PHL}	Propogation Delay ^(2,3) Ax to Bx	$C_L = 50 pF,$ $R_L = 500 \Omega$		0.25	
t _{PZH} t _{PZL}	Enable Time BE to Ax or Bx	$C_L = 50 \text{pF},$	1.5	9.8	ns
$t_{ m PHZ} \ t_{ m PLZ}$	Disable Time \overline{BE} to Ax or Bx	$R_{L} = 500\Omega,$ $R = 500\Omega$	1.5	8.3	

Switching Characteristics over 2.5V ±0.2V Operating Range


Parameters	Description	Conditions ⁽¹⁾	Com.		IIm:4a
rarameters	Description	Conditions	Min.	Max.	Units
t _{PLH} t _{PHL}	Propogation Delay ^(2,3) Ax to Bx	$C_{L} = 50 pF,$ $R_{L} = 500 \Omega$		0.25	
t _{PZH} t _{PZL}	Enable Time \overline{BE} to Ax or Bx	$C_L = 50 \text{pF},$ $R_L = 500 \Omega,$	1.5	9.8	ns
t _{PHZ} t _{PLZ}	Disable Time \overline{BE} to Ax or Bx	$R = 500\Omega$	1.5	8.3	

Notes:


- 1. See test circuit and waveforms.
- 2. This parameter is guaranteed but not tested on Propagation Delays.
- 3. The bus switch contributes no propagational delay other than the RC delay of the On-Resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25ns for 50pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

Packaging Mechanical: 20-pin QSOP (Q)

Packaging Mechanical: 20-pin TSSOP (L)

Ordering Information

Ordering Code	Packaging Code	Package Description
PI3VT3245L	L	20-pin TSSOP
PI3VT3245LE	L	Pb-free & Green, 20-pin TSSOP
PI3VT3245Q	Q	20-pin QSOP
PI3VT3245QE	Q	Pb-free & Green, 20-pin QSOP

Notes:

^{1.} Thermal characteristics can be found on the company web site at www.pericom.com/packaging/