- Ideal for LO in 315 MHz Superhet Receivers with 500 kHz IF
- Very Low Series Resistance
- Quartz Stability
- Rugged, Hermetic, Low-Profile TO39 Case
- Complies with Directive 2002/95/EC (RoHS)

The RO2113 is a true one-port, surface-acoustic-wave (SAW) resonator in a low-profile TO39 case. It provides reliable, fundamental-mode, quartz frequency stabilization of fixed-frequency oscillators operating at approximately 314.5 MHz. The RO2113 is designed for IC based 315 MHz superhet receivers using a 500 kHz IF (Philips UAA3201T). Applications include wireless remote-control and security devices operating in the USA under FCC Part 15 and in Canada under DoC RSS-210.

Absolute Maximum Ratings

Absolute maximum Natings					
Rating	Value	Units			
CW RF Power Dissipation (See: Typical Test Circuit)	+0	dBm			
DC Voltage Between Any Two Pins (Observe ESD Precautions)	±30	VDC			
Case Temperature	-40 to +85	°C			

RO2113

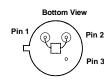
314.5 MHz SAW Resonator

Electrical Characteristics

Ch	aracteristic	Sym	Notes	Minimum	Typical	Maximum	Units
Center Frequency (+25 °C)	Absolute Frequency f _C 3.3.4.5 314.43	314.425		314.575	MHz		
	Tolerance from 314.500 MHz	Δf_{C}	2, 3, 4, 5			±75	kHz
Insertion Loss		IL	2, 5, 6		1.0	1.5	dB
Quality Factor	Unloaded Q	Q _U	5, 6, 7		14,200	- 470 P	
	50 Ω Loaded Q	Q _L			1,600	CO	A
Temperature Stability	Turnover Temperature	er Temperature T _O		10	25	40	°C
	Turnover Frequency	fo	6, 7, 8		f _c		
	Frequency Temperature Coefficient	FTC	30 114		0.037		ppm/°C ²
Frequency Aging	Absolute Value during the First Year	f _A	1		≤10		ppm/yr
DC Insulation Resistance bet	ween Any Two Pins		5	1.0			МΩ
RF Equivalent RLC Model	Motional Resistance	R _M			12	19	Ω
	Motional Inductance	L _M	5, 7, 9		90.1991		μH
	Motional Capacitance	C _M			2.83921		fF
	Pin 1 to Pin 2 Static Capacitance	Co	5, 6, 9	2.9	3.2	3.5	pF
	Transducer Static Capacitance	C _P	5, 6, 7, 9	- 14	2.9	AWI	pF
Test Fixture Shunt Inductance	e	L _{TEST}	2, 7		80	-SC-00	nH
Lid Symbolization (in Addition	n to Lot and/or Date Codes)		RFM RO2113				

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling. Notes:

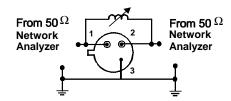
- Frequency aging is the change in f_C with time and is specified at +65°C or less.
 Aging may exceed the specification for prolonged temperatures above +65°C.
 Typically, aging is greatest the first year after manufacture, decreasing significantly in subsequent years.
- The center frequency, f_C is measured at the minimum insertion loss point, IL_{MIN}, with the resonator in the 50 Ω test system (VSWR ≤ 1.2:1). The shunt inductance, L_{TEST}, is tuned for parallel resonance with C_O at f_C. Typically, f_{OSCILLATOR} or f_{TRANSMITTER} is less than the resonator f_C.
- 3. One or more of the following United States patents apply: 4,454,488 and 4,616,197 and others pending.
 - Typically, equipment designs utilizing this device require emissions testing and government approval, which is the responsibility of the equipment manufacturer. Unless noted otherwise, case temperature $T_C = +25^{\circ}C \pm 2^{\circ}C$.
 - The design, manufacturing process, and specifications of this device are subject to change without notice.

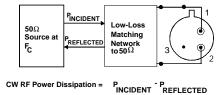

- Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, f_C versus T_C, and C_O.
- Turnover temperature, T_O, is the temperature of maximum (or turnover) frequency, f_O. The nominal frequency at any case temperature, T_C, may be calculated from: f = f_O [1 FTC (T_O -T_C)²]. Typically, oscillator T_O is 20°C less than the specified resonator T_O.
- 9. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_O is the static (nonmotional) capacitance between pin1 and pin 2 measured at low frequency (10 MHz) with a capacitance meter. The measurement includes case parasitic capacitance with a floating case. For usual grounded case applications (with ground connected to either pin 1 or pin 2 and to the case), add approximately 0.25 pF to C_O.

RF Monolithics, Inc. Phone: (972) 233-2903 Fax: (972) 387-9148 E-mail: info@rfm.com Page 1 of

Electrical Connections

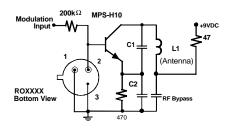
This one-port, two-terminal SAW resonator is bidirectional. The terminals are interchangeable with the exception of circuit board layout.


Pin	Connection	
1	Terminal 1	
2	Terminal 2	
3	Case Ground	

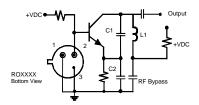

Typical Test Circuit

The test circuit inductor, L_{TEST} , is tuned to resonate with the static capacitance, C_{O} at F_{C} .

Electrical Test:

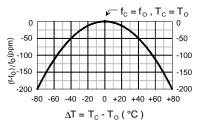


Power Test:

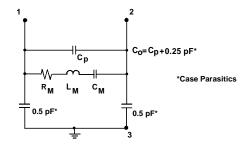


Typical Application Circuits

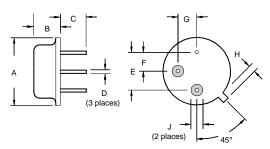
Typical Low-Power Transmitter Application:



Typical Local Oscillator Application:


Temperature Characteristics

The curve shown on the right accounts for resonator contribution only and does not include oscillator temperature characteristics.



Equivalent LC Model

The following equivalent LC model is valid near resonance:

Case Design

Dimensions	Millim	neters	Inches		
Dimensions	Min	Max	Min	Max	
Α		9.40		0.370	
В		3.18		0.125	
С	2.50	3.50	0.098	0.138	
D	0.46 Nominal		0.018 Nominal		
E	5.08 Nominal		0.200 Nominal		
F	2.54 Nominal		0.100 Nominal		
G	2.54 Nominal		0.100 Nominal		
Н		1.02		0.040	
J	1.40		0.055		