

HYBRID EMITTER SWITCHED BIPOLAR TRANSISTOR ESBTTM 1000 V - 50 A - 0.026 Ω POWER MODULE

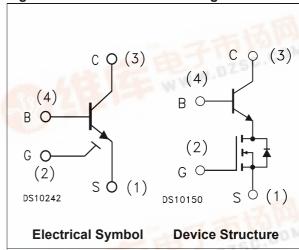
Table 1: General Features

V _{CS(ON)}	Ic	R _{CS(ON)}
1.3 V	50 A	0.026 Ω

- HIGH VOLTAGE / HIGH CURRENT **CASCODE CONFIGURATION**
- **ULTRA LOW EQUIVALENT ON** RESISTANCE
- VERY FAST-SWITCH, UP TO 150 kHz
- ULTRA LOW CISS
- LOW DYNAMIC V_{CS(ON)}

APPLICATION

- INDUSTRIAL CONVERTERS
- WELDING


DESCRIPTION

The STE50DE100 is manufactured in a hybrid structure, using dedicated high voltage Bipolar and low voltage MOSFET technologies, aimed to providing the best performance in ESBT topology. The STE50DE100 is designed for use in industrial converters and/or welding equipment.

Figure 1: Package

Figure 2: Internal Schematic Diagram

Table 2: Order Code

Part Number	Marking	Package	Packaging
STE50DE100	STE50DE100	ISOTOP	TUBE
网络库	WWW.DZSG.CO.	-	

Table 3: Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _{CS(SS)}	Collector-Source Voltage (V _{BS} = V _{GS} = 0 V)	1000	V
V _{BS(OS)}	Base-Source Voltage (I _C = 0, V _{GS} = 0 V)	40	V
V _{SB(OS)}	Source-Base Voltage (I _C = 0, V _{GS} = 0 V)	12	V
V _{GS}	Gate-Source Voltage	± 20	V
I _C	Collector Current	50	Α
I _{CM}	Collector Peak Current (t _p < 5ms)	150	Α
I _B	Base Current	10	Α
I _{BM}	Base Peak Current (t _p < 1ms)	50	Α
P _{tot}	Total Dissipation at T _C ≤ 25 °C	160	W
T _{stg}	Storage Temperature	-65 to 150	°C
TJ	Max. Operating Junction Temperature	150	°C
V _{ISO}	Insulation Withstand Voltage (AC-RMS) from All Four Leads to External Heatsink	2500	V

Table 4: Thermal Data

R _{thj-case}	Thermal Resistance Junction-Case Max	0.78	°C/W	
R _{thc-h}	Thermal Resistance Case-heatsink with Conductive Grease Applied Max	0.05	°C/W	

Table 5: Electrical Characteristics (T_{case} = 25 °C unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{CS(SS)}	Collector-Source Current (V _{BS} = V _{GS} = 0 V)	V _{CS(SS)} = 1000 V			100	μ A
I _{BS(OS)}	Base-Source Current	V _{BS(OS)} = 40 V			10	μ A
	$(I_C = 0 , V_{GS} = 0 V)$					
I _{SB(OS)}	Source-Base Current	V _{SB(OS)} = 10 V			100	μ A
	$(I_C = 0 , V_{GS} = 0 V)$					
I _{GS(OS)}	Gate-Source Leakage	V _{GS} = ± 20 V			500	nA
V _{CS(ON)}	Collector-Source ON	I _C = 50 A I _B = 10 A V _{GS} = 10 V		1.3		V
	Voltage	$I_C = 30 \text{ A}$ $I_B = 3 \text{ A}$ $V_{GS} = 10 \text{ V}$		1.1		V
		(see figure 14)				
h_{FE}	DC Current Gain	$I_C = 50 \text{ A}$ $V_{CS} = 1 \text{ V}$ $V_{GS} = 10 \text{ V}$	3		7	
		$I_C = 30 \text{ A}$ $V_{CS} = 1 \text{ V}$ $V_{GS} = 10 \text{ V}$	6		13	
V _{BS(ON)}	Base-Source ON Voltage	I _C = 50 A I _B = 10 A V _{GS} = 10 V		2.2		V
		$I_C = 30 \text{ A}$ $I_B = 3 \text{ A}$ $V_{GS} = 10 \text{ V}$		1.4		V
V _{GS(th)}	Gate Threshold Voltage	$V_{BS} = V_{GS}$ $I_B = 250 \mu A$	3	3.7	4.5	V
C _{iss}	Input Capacitance	$V_{CS} = 25 V$ f = 1MHZ		2500		pF
		$V_{GS} = V_{CB} = 0$				
Q _{GS(tot)}	Gate-Source Charge	V _{CS} = 25 V V _{GS} = 10 V		60		nC
		$V_{CB} = 0$ $I_{C} = 50 \text{ A}$				

2/9

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
	INDUCTIVE LOAD	V _{GS} = 10 V V _{Clamp} = 800 V				
ts	Storage Time	$R_G = 47 \Omega$ $t_p = 4 \mu s$		0.65		μ s
t _f	Fall Time	$I_C = 25 \text{ A}$ $I_B = 5 \text{ A}$ (see figure 15)		10		ns
	INDUCTIVE LOAD	V _{GS} = 10 V V _{Clamp} = 800 V				
t _s	Storage Time	$R_G = 47 \Omega$ $t_p = 4 \mu s$		0.43		μ s
t _f	Fall Time	$I_C = 25 \text{ A}$ $I_B = 2.5 \text{ A}$ (see figure 15)		6		ns
V _{CSW}	Maximum Collector-Source Voltage without Snubber	$R_G = 47 \Omega$ $h_{FE} = 5 A$ $I_C = 35 A$	1000			V
V _{CS(dyn)}	Collector-Source Dynamic Voltage (500 ns)	$V_{CC} = V_{Clamp} = 300 \text{ V}$ $V_{GS} = 10 \text{ V}$ $V_{GS} = 10$		5.5		V
V _{CS(dyn)}	Collector-Source Dynamic Voltage (1 \(\mu \text{s} \)	$V_{CC} = V_{Clamp} = 300 \text{ V}$ $V_{GS} = 10 \text{ V}$ $V_{GS} = 10$		4.8		V

Figure 3: Output Characteristics

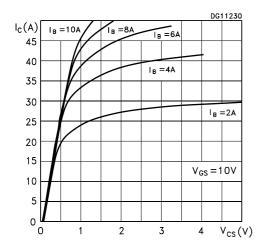


Figure 4: Reverse Biased Safe Operating Area

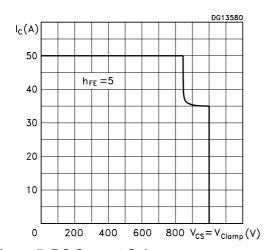


Figure 5: DC Current Gain

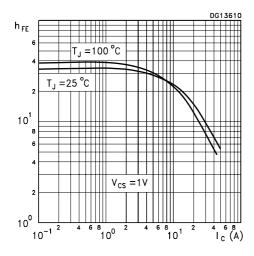


Figure 6: Gate Threshold Voltage vs Temperature

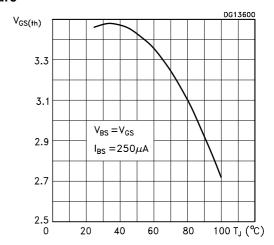
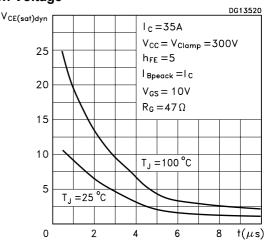



Figure 7: Dynamic Collector-Emitter Saturation Voltage

4/9

Figure 8: Collector-Source On Voltage

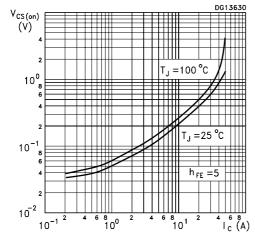


Figure 9: Base-Source On Voltage

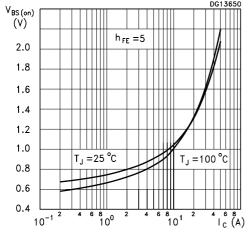


Figure 10: Inductive Load Switching Time

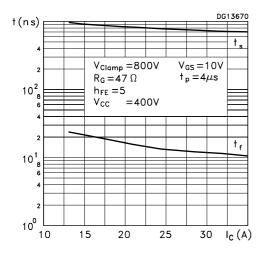


Figure 11: Collector-Source On Voltage

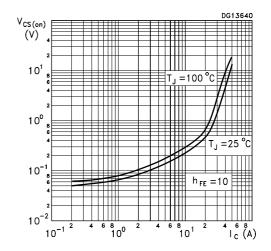


Figure 12: Base-Source On Voltage

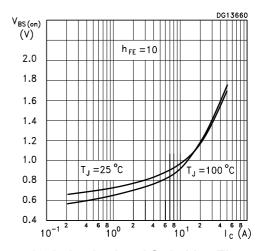


Figure 13: Inductive Load Switching Time

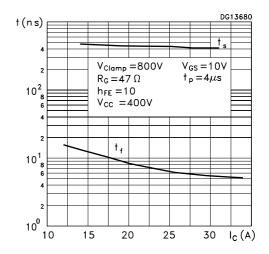


Figure 14: Static $V_{CS(ON)}$ Test Circuit

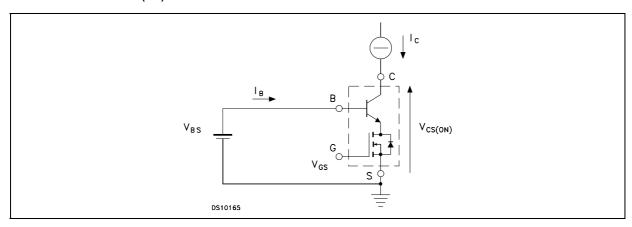
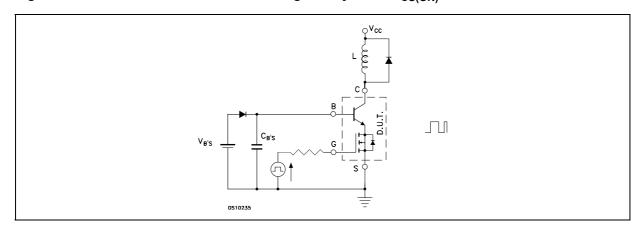
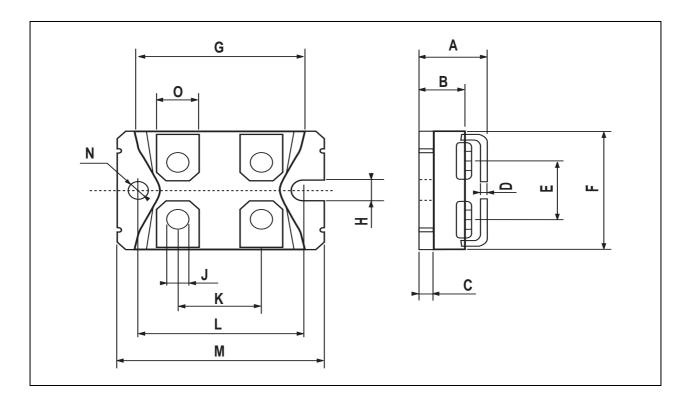



Figure 15: Inductive Load Switching and RBSOA Test Circuit


Figure 16: Inductive Load Turn-on Switching and Dynamic $V_{CS(ON)}$ Test Circuit

6/9

ISOTOP MECHANICAL DATA

DIM.	mm			inch			
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	11.8		12.2	0.466		0.480	
В	8.9		9.1	0.350		0.358	
С	1.95		2.05	0.076		0.080	
D	0.75		0.85	0.029		0.033	
E	12.6		12.8	0.496		0.503	
F	25.15		25.5	0.990		1.003	
G	31.5		31.7	1.240		1.248	
Н	4			0.157			
J	4.1		4.3	0.161		0.169	
K	14.9		15.1	0.586		0.594	
L	30.1		30.3	1.185		1.193	
М	37.8		38.2	1.488		1.503	
N	4			0.157			
0	7.8		8.2	0.307		0.322	

Table 6: Revision History

Date	Release	Change Designator
06-Oct-2004	1	First Release.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

