TSHA440. ### **Vishay Telefunken** # GaAlAs Infrared Emitting Diodes in Ø 3 mm (T-1) Package ### Description The TSHA44..series are high efficiency infrared emitting diodes in GaAlAs on GaAlAs technology, molded in a clear, untinted plastic package. In comparison with the standard GaAs on GaAs technology these high intensity emitters feature about 50 % radiant power improvement. - Extra high radiant power - High radiant intensity for long transmission distance - Suitable for high pulse current operation - Standard T–1(ø 3 mm) package for low space application - Angle of half intensity $\varphi = \pm 20^{\circ}$ - Peak wavelength λ_p = 875 nm - High reliability - Good spectral matching to Si photodetectors # **Applications** Infrared remote control and free air transmission systems with high power requirements in combination with PIN photodiodes or phototransistors. Because of the very low radiance absorption in glass at the wavelength of 875 nm, this emitter series is also suitable for systems with panes in the transmission range between emitter and detector. $T_{amb} = 25^{\circ}C$ | Parameter | Test Conditions | Symbol | Value | Unit | |-------------------------------------|--|------------------|-----------------|------| | Reverse Voltage | | V_{R} | 5 | V | | Forward Current | | IF. | 100 | mA | | Peak Forward Current | $t_p/T = 0.5, t_p = 100 \mu s$ | I _{FM} | 200 | mA | | Surge Forward Current | t _p = 100 μs | I _{FSM} | 2 | Α | | Power Dissipation | | P_V | 180 | mW | | Junction Temperature | The state of s | T _i | 100 | °C | | Operating Temperature Range | CO 100 | T _{amb} | <i>−</i> 55+100 | °C | | Storage Temperature Range | | T _{stq} | − 55+100 | °C | | Soldering Temperature | $t \leq 5$ sec, 2 mm from case | T _{sd} | 260 | °C | | Thermal Resistance Junction/Ambient | | R_{thJA} | 450 | K/W | # **TSHA440.** # Vishay Telefunken #### **Basic Characteristics** $T_{amb} = 25^{\circ}C$ | Parameter | Test Conditions Symbol Min Typ Max | | Max | Unit | | |-------------------------------------|--|------------------|------|------|------| | Forward Voltage | $I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$ | V_{F} | 1.5 | 1.8 | V | | | $I_F = 1.5 \text{ A}, t_p = 100 \mu\text{s}$ | V _F | 3.2 | 4.9 | V | | Temp. Coefficient of V _F | I _F = 100mA | TK _{VF} | -1.6 | | mV/K | | Reverse Current | V _R = 5 V | I _R | | 100 | μΑ | | Junction Capacitance | $V_R = 0 V, f = 1 MHz, E = 0$ | C _i | 20 | | рF | | Temp. Coefficient of ϕ_e | I _F = 100 mA | TΚ _{φe} | -0.7 | | %/K | | Angle of Half Intensity | | φ | ±20 | | deg | | Peak Wavelength | I _F = 100 mA | λ_{p} | 875 | | nm | | Spectral Bandwidth | I _F = 100 mA | Δλ | 80 | | nm | | Temp. Coefficient of λ_p | I _F = 100 mA | $TK_{\lambda p}$ | 0.2 | | nm/K | | Rise Time | I _F = 100 mA | t _r | 600 | | ns | | | I _F = 1.5 A | t _r | 300 | | ns | | Fall Time | I _F = 100 mA | t _f | 600 | | ns | | | I _F = 1.5 A | t _f | 300 | | ns | # **Type Dedicated Characteristics** $T_{amb} = 25^{\circ}C$ | Parameter | Test Conditions | Type | Symbol | Min | Тур | Max | Unit | |-------------------|-----------------------------|----------|----------------|-----|-----|-----|-------| | Radiant Intensity | $I_F=100$ mA, $t_p=20$ ms | TSHA4400 | l _e | 12 | 20 | | mW/sr | | | · | TSHA4401 | l _e | 16 | 30 | | mW/sr | | | $I_F=1.5A$, $t_p=100\mu s$ | TSHA4400 | l _e | 140 | 240 | | mW/sr | | | · | TSHA4401 | l _e | 190 | 360 | | mW/sr | | Radiant Power | $I_F=100$ mA, $t_p=20$ ms | TSHA4400 | φ _е | | 20 | | mW | | | , | TSHA4401 | φ _е | | 24 | | mW | # **Typical Characteristics** $(T_{amb} = 25^{\circ}C \text{ unless otherwise specified})$ Figure 1. Power Dissipation vs. Ambient Temperature Figure 2. Forward Current vs. Ambient Temperature # Vishay Telefunken Figure 3. Pulse Forward Current vs. Pulse Duration Figure 4. Forward Current vs. Forward Voltage Figure 5. Relative Forward Voltage vs. Ambient Temperature Figure 6. Radiant Intensity vs. Forward Current Figure 7. Radiant Power vs. Forward Current Figure 8. Rel. Radiant Intensity\Power vs. Ambient Temperature # **TSHA440.** # Vishay Telefunken Figure 9. Relative Radiant Power vs. Wavelength Figure 10. Relative Radiant Intensity vs. Angular Displacement ## **Dimensions in mm** #### Vishay Telefunken ### **Ozone Depleting Substances Policy Statement** It is the policy of Vishay Semiconductor GmbH to - 1. Meet all present and future national and international statutory requirements. - 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs). The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. **Vishay Semiconductor GmbH** has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. - 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively - 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA - 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay-Telefunken products for any unintended or unauthorized application, the buyer shall indemnify Vishay-Telefunken against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423