# **High Ohmic/High Voltage Resistors** A metal glazed film is deposited on a high grade ceramic body. After a helical groove has been cut in the resistive layer, tinned electrolytic copper wires are welded to the end-caps. The resistors are coated with a light blue lacquer which provides electrical, mechanical, and climatic protection. The encapsulation is resistant to all cleaning solvents in accordance with "MIL-STD 202E, method 215" and "IEC 60068-2-45". ### **FEATURES** - These resistors meet the safety requirements of: - "UL1676" (range 510 k $\Omega$ to 11 M $\Omega$ ) - "IEC 60065" - "EN60065" - "BS60065" (U.K.) - "VDE 0860" (Germany) - "CQC" (China) - · High pulse loading capability - · Small size. ### **APPLICATIONS** - Where high resistance, high stability and high reliability at high voltage are required - Safety component in combination with high voltage - White goods - · High humidity environment - · Power supplies. | DESCRIPTION | VALUE | | |----------------------------------------------------------------|-----------------------------------------------------------------------------------|--| | Resistance range <sup>(1)</sup> | 100 kΩ to 33 MΩ | | | Resistance tolerance and series | ± 1 %: E24/E96 series;<br>± 5 %: E24 series | | | Maximum dissipation at T <sub>amb</sub> = 70 °C | 0.5 W | | | Thermal resistance, R <sub>th</sub> | 120 K/W | | | Temperature coefficient | $\leq \pm 200 \times 10^{-6} / \text{K}$ | | | Maximum permissible voltage: | | | | DC | 3500 V | | | RMS DIE | 2500 V | | | Dielectric withstanding voltage of the insulation for 1 minute | 700 V | | | Basic specifications | IEC 60115-1B | | | Safety requirements | UL1676 (510 k $\Omega$ to 11 M $\Omega$ ); EN60065; BS60065; VDE 0860; NFC 92-130 | | | Climatic category (IEC 60068) | 55/155/56 | | | Stability after: | 0750- | | | load (1000 hours) | $\Delta$ R/R max.: ± 1.5 % + 0.1 Ω | | | accelerated damp heat test (6 days) | $\Delta R/R \text{ max.: } \pm 1.5 \% + 0.1 \Omega$ | | | long term damp heat test (56 days) | $\Delta$ R/R max.: ± 1.5 % + 0.1 Ω | | | Noise | max. 2.5 μV/V | | ### Note 1. Ohmic values (other than resistance range) are available upon request. | 12NC ORDERING CODE INDICATING RESISTOR TYPE AND PACKAGING | | | | | | |-----------------------------------------------------------|---------------|-------------|------------------------|-------------------|--| | e-//(6 | T. D.F. | TOL.<br>(%) | ORDERING CODE 2322 242 | | | | TYPE | TAPE<br>WIDTH | | BANDOLIER IN AMMOPACK | BANDOLIER ON REEL | | | | (mm) | | 1 000<br>units | 5000<br>units | | | RR57 | 52 | ± 1 | 8 | 6 | | | #E | | ± 5 | 13 | 23 | | ### High Ohmic/High Voltage Resistors ### **ORDERING INFORMATION** ### Ordering Code (12NC) - The resistors have a 12-digit ordering code starting with 2322 242. - The subsequent: first digit for 1 % tolerance products (E24 and E96 series) or 2 digits for 5 % (E24 series) indicate the resistor type and packaging. - The remaining digits indicate the resistance value: - The first 3 digits for 1 % or 2 digits for 5 % tolerance products indicate the resistance value. - The last digit indicates the resistance decade. ### **Last Digit of 12NC Indicating Resistance Decade** | RESISTANCE DECADE | LAST DIGIT | |-------------------|------------| | 100 to 976 kΩ | 4 | | 1 to 9.76 MΩ | 5 | | ≥10 MΩ | 6 | ### Ordering Example The ordering code for a VR37, resistor value 7.5 M $\Omega$ , 5 % tolerance, supplied on a bandolier of 1000 units in ammopack, is: 2322 242 13755. ### **DIMENSIONS** | DIMENSIONS - resistor type and relevant physical dimensions | | | | | |-------------------------------------------------------------|------------|------------------------|------------------------|------------| | TYPE | ØD<br>MAX. | L <sub>1</sub><br>MAX. | L <sub>2</sub><br>MAX. | Ød | | VR37 | 4.0 | 9.0 | 10.0 | 0.7 ± 0.03 | | MASS PER 100 UNITS | | | |--------------------|-------------|--| | TYPE | MASS<br>(g) | | | VR37 | 53 | | Yellow and grey are used instead of gold and silver because metal particles in the lacquer could affect high-voltage properties. ### **MARKING** The nominal resistance and tolerance are marked on the resistor using four or five coloured bands in accordance with IEC publication 60062 "Colour codes for fixed resistors". ### **OUTLINES** The length of the body $(L_1)$ is measured by inserting the leads into holes of two identical gauge plates and moving these plates parallel to each other until the resistor body is clamped without deformation ("IEC publication 60294"). # FUNCTIONAL PERFORMANCE PRODUCT CHARACTERIZATION Standard values of nominal resistance are taken from the E96/E24/E12 series for resistors with a tolerance of $\pm$ 1 % or 5 %. The values of the E96/E24 series are in accordance with "IEC publication 60063". | LIMITING VALUES | | | | | |-----------------|-------------------------------------|------|--------------------|--| | ТҮРЕ | LIMITING VOLTAGE <sup>(1)</sup> (V) | | LIMITING POWER (W) | | | | DC | RMS | (**) | | | VR37 | 3500 | 2500 | 0.5 | | ### Note 1. The maximum voltage that may be continuously applied to the resistor element, see "IEC publication 60115-1". The maximum permissible hot-spot temperature is 155 °C. ## High Ohmic/High Voltage Resistors Vishay BCcomponents The power that the resistor can dissipate depends on the operating temperature. Maximum dissipation ( $P_{max}$ ) in percentage of rated power as a function of the ambient temperature ( $T_{amb}$ ). Maximum allowed peak pulse voltage in accordance with "IEC 60065 chapter 14.1"; 50 discharges from a 1 nF capacitor charged to $\hat{V}_{max}$ ; 12 discharges/minute (drift $\Delta R/R \le 2$ %). ### Derating ### **Pulse Loading Capability** Temperature rise ( $\Delta T$ ) at the lead end (soldering point) as a function of dissipated power at various lead lengths after mounting. ### **Application Information** ### High Ohmic/High Voltage Resistors ### **TESTS AND REQUIREMENTS** Essentially all tests are carried out in accordance with the schedule of "IEC publication 60115-1", category LCT/UCT/56 (rated temperature range: Lower Category Temperature, Upper Category Temperature; damp heat, long term, 56 days). The testing also covers the requirements specified by EIA and EIAJ. The tests are carried out in accordance with IEC publication 60068-2, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmospheric conditions according to "IEC 60068-1", subclause 5.3. In the Test Procedures and Requirements table the tests and requirements are listed with reference to the relevant clauses of "IEC publications 60115-1 and 60068-2"; a short description of the test procedure is also given. In some instances deviations from the IEC recommendations were necessary for our method of specifying. All soldering tests are performed with mildly activated flux. | TEST PROCEDURES AND REQUIREMENTS | | | | | |----------------------------------|----------------------------------|--------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------| | IEC<br>60115-1<br>CLAUSE | IEC<br>60068-2<br>TEST<br>METHOD | TEST | PROCEDURE | REQUIREMENTS | | 4.16 | 21 (U) | robustness of terminations: | | | | 4.16.2 | 21 (Ua1) | tensile all samples | ∅0.7 mm; load 10 N; 10 s | number of failures $< 10 \times 10^{-6}$ | | 4.16.3 | 21 (Ub) | bending half number of samples | $\varnothing$ 0.7 mm; load 5 N; 4 × 90° | number of failures $< 10 \times 10^{-6}$ | | 4.16.4 | 21 (Uc) | torsion other half of samples | $3 \times 360^\circ$ in opposite directions | no damage $\Delta R/R \text{ max.:} \pm 0.5 \ \% + 0.05 \ \Omega$ | | 4.17 | 20 (Ta) | solderability | 2 s; 235 °C | good tinning; no damage | | 4.18 | 20 (Tb) | resistance to soldering heat | thermal shock: 3 s; 350 °C;<br>3 mm from body | $\Delta$ R/R max.: ± 0.5 % + 0.05 Ω | | 4.19 | 14 (Na) | rapid change of temperature | 30 minutes at – 55 °C and<br>30 minutes at + 155 °C; 5 cycles | $\Delta$ R/R max.: ± 0.5 % + 0.05 $\Omega$ | # High Ohmic/High Voltage Resistors Vishay BCcomponents | TEST PROCEDURES AND REQUIREMENTS | | | | | |----------------------------------|----------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------| | IEC<br>60115-1<br>CLAUSE | IEC<br>60068-2<br>TEST<br>METHOD | TEST | PROCEDURE | REQUIREMENTS | | 4.20 | 29 (Eb) | bump | 3 x 1500 bumps in 3 directions; 40 g | no damage $\Delta$ R/R max.: ± 0.5 % + 0.05 $\Omega$ | | 4.22 | 6 (Fc) | vibration | frequency 10 to 500 Hz; displacement 1.5 mm or acceleration 10 g; 3 directions; total 6 hours (3 × 2 hours) | no damage<br>$\Delta$ R/R max.: ± 0.5 % + 0.05 $\Omega$ | | 4.23 | | climatic sequence: | | | | 4.23.2 | 2 (Ba) | dry heat | 16 hours; 155 °C | | | 4.23.3 | 30 (Db) | damp heat (accelerated) 1 <sup>st</sup> cycle | 24 hours; 55 °C; 90 to 100 % RH | | | 4.23.4 | 1 (Aa) | cold | 2 hours; – 55 °C | | | 4.23.5 | 13 (M) | low air pressure | 2 hours; 8.5 kPa; 15 to 35 °C | | | 4.23.6 | 30 (Db) | damp heat (accelerated) remaining cycles | 5 days; 55 °C; 95 to 100 % RH | $R_{ins}$ min.: 10 <sup>3</sup> MΩ<br>$\Delta R/R$ max.: ± 1.5 % + 0.1 Ω | | 4.24.2 | 3 (Ca) | damp heat<br>(steady state) | 56 days; 40 °C; 90 to 95 % RH;<br>dissipation 0.01 P <sub>n</sub> ;<br>limiting voltage 100 V (DC) | $\Delta$ R/R max.: ± 1.5 % + 0.1 $\Omega$ | | 4.25.1 | | endurance | 1000 hours at 70 °C; P <sub>n</sub> or V <sub>max</sub> | $\Delta$ R/R max.: ± 1.5 % + 0.1 $\Omega$ | | 4.8.4 | | temperature coefficient | between – 55 °C and + 155 °C<br>(TC × 10 <sup>-6</sup> /K) | ≤ ± 200 | ## High Ohmic/High Voltage Resistors | TEST P | TEST PROCEDURES AND REQUIREMENTS | | | | | |--------------------------|----------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--| | IEC<br>60115-1<br>CLAUSE | IEC<br>60068-2<br>TEST<br>METHOD | TEST | PROCEDURE | REQUIREMENTS | | | 4.7 | | voltage proof on insulation | 700 V (RMS) during 1 minute; V-block method | no breakdown | | | 4.12 | | noise | "IEC publication 60195" | max. 2.5 μV/V | | | 4.6.1.1 | | insulation resistance | 500 V (DC) during 1 minute; V-block method | R <sub>ins</sub> min.: 10 <sup>4</sup> MΩ | | | 4.13 | | short time overload | room temperature; dissipation 6.25 × P <sub>n</sub> (voltage not more than 2 × limiting voltage); 10 cycles; 5 s on and 45 s off | $\Delta$ R/R max.: ± 2.0 % + 0.05 Ω | |