SCBS704D - AUGUST 1997 - REVISED APRIL 1999 - State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low Static-Power Dissipation - I_{off} and Power-Up 3-State Support Hot Insertion - Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors - Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V V_{CC}) - Support Unregulated Battery Operation Down to 2.7 V - Typical V_{OLP} (Output Ground Bounce) < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C - Latch-Up Performance Exceeds 500 mA Per JESD 17 - ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0) - Package Options Include Plastic Small-Outline (DW), Shrink Small-Outline (DB), Thin Shrink Small-Outline (PW), and Thin Very Small-Outline (DGV) Packages, Ceramic Chip Carriers (FK), Ceramic Flat (W) Package, and Ceramic (JT) DIPs #### description These octal transceivers are designed specifically for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment. SN54LVTH543 . . . JT OR W PACKAGE SN74LVTH543 . . . DB, DGV, DW, OR PW PACKAGE (TOP VIEW) ## SN54LVTH543 . . . FK PACKAGE (TOP VIEW) NC - No internal connection The 'LVTH543 devices contain two sets of D-type latches for temporary storage of data flowing in either direction. Separate latch-enable (LEAB or LEBA) and output-enable (OEAB or OEBA) inputs are provided for each register to permit independent control in either direction of data flow. The A-to-B enable (CEAB) input must be low to enter data from A or to output data from B. If CEAB is low and LEAB is low, the A-to-B latches are transparent; a subsequent low-to-high transition of LEAB puts the A latches in the storage mode. With CEAB and OEAB both low, the 3-state B outputs are active and reflect the data present at the output of the A latches. Data flow from B to A is similar, but requires using the CEBA, LEBA, and OEBA inputs. Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level. Please be aw Texas Instrum Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. SCBS704D - AUGUST 1997 - REVISED APRIL 1999 #### description (continued) When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. This device is fully specified for hot-insertion applications using I_{off} and power-up 3-state. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict. The SN54LVTH543 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74LVTH543 is characterized for operation from –40°C to 85°C. #### **FUNCTION TABLE**[†] | | OUTPUT | | | | |------|--------|------|---|------------------| | CEAB | LEAB | OEAB | В | | | Н | Х | Х | Χ | Z | | Х | Χ | Н | Χ | Z | | L | Н | L | Χ | в ₀ ‡ | | L | L | L | L | L | | L | L | L | Н | Н | [†] A-to-B data flow is shown; B-to-A flow control is the same except that it uses CEBA, LEBA, and OEBA. #### logic symbol§ § This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the DB, DGV, DW, JT, PW, and W packages. [‡]Output level before the indicated steady-state input conditions were established SCBS704D - AUGUST 1997 - REVISED APRIL 1999 #### logic diagram (positive logic) Pin numbers shown are for the DB, DGV, DW, JT, PW, and W packages. ## absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | Supply voltage range, V_{CC} | | |--|-------| | or power-off state, V _O (see Note 1) | | | Voltage range applied to any output in the high state, V_O (see Note 1)0.5 V to V_{CC} + 0 |).5 V | | Current into any output in the low state, IO: SN54LVTH543 | 3 mA | | SN74LVTH543 | 3 mA | | Current into any output in the high state, IO (see Note 2): SN54LVTH543 | 3 mA | | SN74LVTH543 64 | 1 mA | | Input clamp current, I_{IK} ($V_I < 0$) |) mA | | Output clamp current, I_{OK} ($V_O < 0$) | | | Package thermal impedance, θ _{JA} (see Note 3): DB package | | | DGV package | | | DW package | | | PW package | | | Storage temperature range, T _{stg} –65°C to 15 | | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. - 2. This current flows only when the output is in the high state and $V_O > V_{CC}$. - 3. The package thermal impedance is calculated in accordance with JESD 51. SCBS704D - AUGUST 1997 - REVISED APRIL 1999 #### recommended operating conditions (see Note 4) | | | SN54LV | TH543 | SN74LV | UNIT | | | |-----------------|------------------------------------|-----------------|-------|--------|------|-----|------| | | | | MIN | MAX | MIN | MAX | UNIT | | VCC | Supply voltage | | 2.7 | 3.6 | 2.7 | 3.6 | V | | VIH | High-level input voltage | | 2 | 4 | 2 | | V | | V _{IL} | Low-level input voltage | | | 0.8 | | 0.8 | V | | VI | Input voltage | 4 | 5.5 | | 5.5 | V | | | loh | High-level output current | | 7 | -24 | | -32 | mA | | loL | Low-level output current | | 22 | 48 | | 64 | mA | | Δt/Δν | Input transition rise or fall rate | Outputs enabled | 70 | 10 | | 10 | ns/V | | Δt/ΔVCC | Power-up ramp rate | | 200 | | 200 | | μs/V | | T _A | Operating free-air temperature | | -55 | 125 | -40 | 85 | °C | NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. SCBS704D - AUGUST 1997 - REVISED APRIL 1999 # electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | PARAMETER | | TEOT 0 | TEST CONDITIONS | | | 543 | SN | 74LVTH5 | 643 | UNIT | | | | |-----------------------|----------------|---|---------------------------------------|--------------------|-------|-------|-------|------------------|------|------|--|--|--| | PAR | KAMETER | lesi C | ONDITIONS | MIN | TYP | MAX | MIN | TYP [†] | MAX | UNII | | | | | VIK | | $V_{CC} = 2.7 \text{ V},$ | I _I = -18 mA | | | -1.2 | | | -1.2 | V | | | | | | | $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V},$ | $I_{OH} = -100 \mu A$ | V _{CC} -0 | .2 | | VCC-0 | .2 | | | | | | | Voн | | $V_{CC} = 2.7 \text{ V},$ | $I_{OH} = -8 \text{ mA}$ | 2.4 | | | 2.4 | | | V | | | | | | | V _{CC} = 3 V | $I_{OH} = -24 \text{ mA}$ | 2 | | | | | | V | | | | | | | VCC = 3 V | $I_{OH} = -32 \text{ mA}$ | | | | 2 | | | | | | | | | | V _{CC} = 2.7 V | I _{OL} = 100 μA | | | 0.2 | | | 0.2 | | | | | | | | VCC = 2.7 V | I _{OL} = 24 mA | | | 0.5 | | | 0.5 | | | | | | VOL | | | I _{OL} = 16 mA | | | 0.4 | | | 0.4 | V | | | | | VOL | | V _{CC} = 3 V | $I_{OL} = 32 \text{ mA}$ | | | 0.5 | | | V | | | | | | | | VCC = 3 V | I _{OL} = 48 mA | | | 0.55 | | | | | | | | | | _ | | I _{OL} = 64 mA | | | Ź. | | | | | | | | | | Control inputs | $V_{CC} = 3.6 \text{ V},$ | $V_I = V_{CC}$ or GND | | Š | ±1 | | | ±1 | | | | | | | Control inputs | $V_{CC} = 0 \text{ or } 3.6 \text{ V},$ | V _I = 5.5 V | | Z. Z. | 10 | | | 10 |) | | | | | Ц | A or B ports‡ | V _{CC} = 3.6 V | V _I = 5.5 V | | 20 | | | | | μΑ | | | | | | | | $V_I = V_{CC}$ | | 3 | 1 | | | 1 | 1 | | | | | | | | V _I = 0 | | 5 | -5 | | -5 | | | | | | | l _{off} | _ | $V_{CC} = 0$, | V_I or $V_O = 0$ to 4.5 V | Q | | | | | ±100 | μΑ | | | | | | | VCC = 3 V | V _I = 0.8 V | 75 | | | 75 | | | | | | | | I _I (hold) | A or B ports | | V _I = 2 V | -75 | | | -75 | | | μΑ | | | | | | | V _{CC} = 3.6 V§ | $V_{I} = 0 \text{ to } 3.6 \text{ V}$ | | | | | ±500 | | | | | | | lozpu | | $\frac{V_{CC}}{OE} = 0$ to 1.5 V, $V_{O} = 0$ | 0.5 to 3 V, | | | ±100* | | | ±100 | μΑ | | | | | I _{OZPD} | | $\frac{V_{CC}}{OE}$ = 1.5 V to 0, V _O = OE = don't care | = 0.5 to 3 V, | | | ±100* | | | ±100 | μΑ | | | | | ICC | | Outputs high | | | 0.19 | | | 0.19 | | | | | | | | | $V_{CC} = 3.6 \text{ V}, I_{O} = 0,$ | Outputs low | | | 5 | | | 5 | mA | | | | | | | $V_I = V_{CC}$ or GND | Outputs disabled | | | 0.19 | | | 0.19 | | | | | | ΔI _{CC} ¶ | | V _{CC} = 3 V to 3.6 V, On Other inputs at V _{CC} or | | | | 0.2 | | | 0.2 | mA | | | | | Ci | | V _I = 3 V or 0 | | | 4 | | | 4 | | pF | | | | | C _{io} | | V _O = 3 V or 0 | | 1 | 9 | | | 9 | | pF | | | | ^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested. $^{^{\}dagger}$ All typical values are at VCC = 3.3 V, TA = 25 $^{\circ}$ C. [‡] Unused terminals are at V_{CC} or GND. [§] This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another. [¶] This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND. SCBS704D - AUGUST 1997 - REVISED APRIL 1999 # timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1) | | | | | SN54LVTH543 | | | SN74LVTH543 | | | | | | | |--------------------------|----------------------------|--|-----------|-------------|------------------------------------|-----|-------------------------|-----|------------------------------------|-----|-------------------------|----|--| | | | | | | V _{CC} = 3.3 V
± 0.3 V | | V _{CC} = 2.7 V | | V _{CC} = 3.3 V
± 0.3 V | | V _{CC} = 2.7 V | | | | | | | | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | | | | t _W | Pulse duration, | LEAB or LEBA low | | 3.3 | | 3.3 | | 3.3 | | 3.3 | | ns | | | | | A or B before
LEAB or LEBA↑ | Data high | 0.4 | | 0.4 | | 0.4 | | 0.4 | | ns | | | ١. | Cotup timo | | Data low | 1 | | 1.5 | | 1 | | 1.5 | | | | | ^t su | t _{SU} Setup time | A or B before | Data high | 0.2 | 4 | 0.2 | | 0.2 | | 0.2 | | | | | | CEAB or CEBA↑ | Data low | 0.7 | 5 | 1.2 | | 0.7 | | 1.2 | | | | | | | | A or B after LEAB or LEBA↑ A or B after | Data high | 1.5 | 776 | 0.6 | | 1.5 | | 0.6 | | | | | t _h Hold time | Hold time | | Data low | 1.3 | 70% | 1.5 | | 1.3 | | 1.5 | | | | | | riola linie | | Data high | 1.6 | Q | 0.5 | | 1.6 | | 0.5 | | ns | | | | CEAB or CEBA↑ | Data low | 1.4 | | 1.6 | | 1.4 | | 1.6 | | | | | # switching characteristics over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1) | | | | SN54LVTH543 | | | | | | | | | | |------------------|-----------------|--------|------------------------------------|-----|--|-------------------------|-----|---------------------|-----|-------------------------|-----|------| | PARAMETER | FROM
(INPUT) | | V _{CC} = 3.3 V
± 0.3 V | | VCC = | V _{CC} = 2.7 V | | CC = 3.3
± 0.3 V | V | V _{CC} = 2.7 V | | UNIT | | | | | MIN | MAX | MIN | MAX | MIN | TYP† | MAX | MIN | MAX | | | t _{PLH} | A or B | B or A | 1.2 | 3.9 | | 4.5 | 1.3 | 2.5 | 3.7 | | 4.3 | ns | | ^t PHL | AOIB | BULK | 1.2 | 3.9 | | 4.5 | 1.3 | 2.5 | 3.7 | | 4.3 | 115 | | t _{PLH} | <u>.</u> | A or B | 1.2 | 5.1 | | 6.1 | 1.3 | 2.9 | 4.7 | | 5.9 | ns | | t _{PHL} | LE | AOIB | 1.2 | 5.1 | THE STATE OF S | 6.1 | 1.3 | 2.9 | 4.7 | | 5.9 | 115 | | ^t PZH | ŌĒ | A or B | 1 | 5.1 | F | 6.4 | 1.1 | 2.9 | 4.9 | | 6.2 | ns | | t _{PZL} | OE | AOIB | 1 | 5.1 | 9 | 6.4 | 1.1 | 3.2 | 4.9 | | 6.2 | 115 | | ^t PHZ | ŌĒ | A or B | 1.9 | 5.6 | 1 | 6.2 | 2 | 3.4 | 5.3 | | 5.9 | ns | | tPLZ | OE | AOIB | 1.9 | 5.6 | | 6.2 | 2 | 3.7 | 5.3 | | 5.9 | 115 | | ^t PZH | | A or B | 1.2 | 5.5 | | 7 | 1.3 | 3.2 | 5.3 | | 6.8 | ns | | tPZL | CE | AUID | 1.2 | 5.5 | | 7 | 1.3 | 3.5 | 5.3 | | 6.8 | 115 | | t _{PHZ} | CE | A or B | 2.2 | 5.7 | | 6.2 | 2.3 | 3.8 | 5.4 | | 5.9 | nc | | tPLZ | | AUID | 2.2 | 5.7 | | 5.9 | 2.3 | 3.9 | 5.4 | | 5.6 | ns | [†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. SCBS704D - AUGUST 1997 - REVISED APRIL 1999 #### PARAMETER MEASUREMENT INFORMATION NOTES: A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , $t_f \leq$ 2.5 ns. $t_f \leq$ 2.5 ns. - D. The outputs are measured one at a time with one transition per measurement. Figure 1. Load Circuit and Voltage Waveforms #### **IMPORTANT NOTICE** Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof. Copyright © 1999, Texas Instruments Incorporated